Dealing with attribute non-attendance behavior in food choice experiments:

making sense of serial, choice-task and inferred methods

Dr. Vincenzina Caputo

With E.Van Loo, R. Scarpa, R.M. Nayga Jr, and W. Verbeke

Dept. of Agricultural, Food and Resource Economics, Michigan State University

Sept 2015

1.BACKGROUND

2.OBJECTIVES

3.EXPERIMENTAL PROCEDURES

4.DATA

5.EMPIRICAL ANALYSIS

6.RESULTS

7.CONCLUSION

8. FUTURE RESEARCH DIRECTIONS

BACKGROUND CHOICE EXPERIMENTS: WHAT IS IT?

- Choice experiments is a *stated-preference multi-attribute* method used to elicit consumer preferences for both public and private goods.
- Applied in many fields of applied economics, recently also popular in *agri-food industry related studies*.

Food choice experiments/surveys present respondents with choice tasks designed to elicit trade-offs among alternative foods.

BACKGROUND AN EXAMPLE OF A FOOD CHOICE TASK

Choice set card 1									
Attributes	Alternative A	Alternative B	Alternative C						
Juice	Orange	Apple							
			None						
Shelf life	20 days	30 days	Of						
			Them						
Price	\$2.00	\$3.00							

Please indicate which option you would choose (Mark your choice)

BACKGROUND

CHOICE EXPERIMENT: THEORETICAL FRAMEWORK

It is consistent with the Lancaster theory and Random Utility theory:

(1)Good => multiple attributes utility good = Σ utilities attributes;

(2)Selected alternative interpreted as the one with highest utility:

BACKGROUND

CHOICE EXPERIMENT: BEHAVIORAL ASSUMPTIONS

- Conventional models imply fully compensatory choice behavior (limit):
 - (1)All attributes are heeded and evaluated: trading off gains and losses across alternatives;
 - (2)Unconstrained mental efforts in evaluation;

BACKGROUND ATTRIBUTE NON ATTENDANCE

A number of choice experiment studies have shown that people employ heuristics such as *non-attendance* (ANA).

Respondents ignore (or fail to attended to) selected attributes, while making choices.

⇒Partially compensatory choice behavior

BACKGROUND ATTRIBUTE NON ATTENDANCE (I)

Choice set card 1								
Attributes	Alternative A	Alternative B	Alternative C					
Juice	Orange	Apple						
Shelf life	20 days	30 days	None of them					
Price	\$2.00	\$3.00						

Please indicate which option you would choose (Mark your choice)

BACKGROUND ATTRIBUTE NON ATTENDANCE (II)

> Corroborating evidence for ANA:

⇒ Fields: transportation, health economics, and environmental valuation;

⇒ Main substantive findings: **bias in market share** prediction and welfare measure estimates;

⇒Food Economics/food choices: relatively unexplored... but potentially very important.

BACKGOUND METHODS TO ACCOUNT FOR ANA

BACKGROUND METHODS TO MODEL ANA BEHAVIOR

> Standard modeling approach:

⇒*The attribute self-reported as ignored (or assumed to be ignored)* **are selectively removed** *from the utility function.*

$$U_{njtk} = \sum_{k=1}^{K} \beta_{nk} x_{njkt} + \mathcal{E}_{njt}$$
Ignored attributes
$$U_{njtk} = \sum_{k=1}^{K} \beta_{nk} x_{njkt} + \mathcal{E}_{njt}$$

BACKGROUND ANA: WHAT ARE THE ISSUES?

Serial vs. choice task:

 \Rightarrow Should stated ANA information be collected at the <u>serial</u> level or at the single <u>choice task</u> level?

 \Rightarrow What are the consequences of either for willingness to pay (WTP) estimates and prediction probabilities?

BACKGROUND ANA: WHAT ARE THE ISSUES?

Serial vs. choice task

⇒Which is a better approximation to true ANA behavior? (*measurement errors*);

 \Rightarrow The need for validation (Hess and Hensher 2010).

A better understanding could improve the ways we design CE surveys and provide us more reliable and valid valuation estimates used in food system research.

BACKGROUND ANA: WHAT ARE THE ISSUES? (I)

>Inferred ANA vs. Stated ANA:

 \Rightarrow Lack of concordance between stated and inferred ANA;

 \Rightarrow *The concordance has never been explored at the choice task level.*

... yet it is crucial to improve the behavioral relevance of CE models and so **design appropriate marketing analytics and strategies.**

OUR RESEARCH

- 1. We explored whether there is any *systematic difference* in terms of *willingness to pay estimates* across the *serial and choice task* stated ANA;
- 2. We validated the stated serial and choice task ANA information;
- 3. We examined if there are differences across the stated ANA information (serial and choice task) and the inferred ANA method.

EXPERIMENTAL PROCEDURES

Chicken breast

Attributes	Levels considered
Organic label (ORG)	Not present Biogarantie label EU Organic label
Animal welfare label (AW)	Not present Present
Types of free-range	Not present
larming claim (FK)	Free range Traditional free-range
	Free range-total freedom
Reduced carbon footprint label (CO2 emitted)	Not present 20% reduction: 5.6 kg CO2e vs.7 kg CO2 30% reduction: 4.9 kg CO2e vs.7 kg CO2
Price	€10/kg, €15/kg, €20/kg, €25/kg

EXPERIMENTAL PROCEDURES (I)

- Orthogonal fraction of full factorial design in SPSS: 16 combinations for alternative A;
- We then followed Street and Burgess (2007) to generate the set of 16 pairs for alternative B;
- > Two blocks of 8 questions each per respondent;
- > Split sample into two randomly assigned treatments:
 - \Rightarrow Serial follow up questions; \Rightarrow Choice Task follow up questions.

DATA

> Data collection: **online survey** (Belgium):

 \Rightarrow Serial Treatment: **344 respondents;** \Rightarrow Choice Task Treatment: **257 respondents**.

Majority are women (60% and 63%), college level educated (43% and 44%), and with a moderate to well-off financial situation (50% and 57%)

>*No significant differences* across *demographics* across the treatments.

EMPIRICAL ANALYSIS FIRST OBJECTIVE

STEP1 - Two *Random Parameter Logit models*: serial and choice task treatment.

⇒Behavioral assumption: **partially compensatory behavior**;

⇒Standard approach: constrain the coefficients of the attribute stated as ignored to zero.

>Utility specification:

 $U_{njt} = 1_{nk}(I = 1)[\beta_1^1 * PRICE_{njt} + \beta_2^1 OrgEU_{njt} + \beta_3^1 OrgBE_{njt} + \beta_4^1 AW_{njt} + \beta_5^1 FR_{njt} + \beta_6^1 FRtrad_{njt} + \beta_6^1 FRtrad_$

+ $\beta_7^1 FRtot_{njt} + \beta_8^1 CO20_{njt} + \beta_9^1 CO30_{njt} + \alpha_1 * Nobuy + 1_j(\eta_{nt}) + \varepsilon_{njt}$

EMPIRICAL ANALYSIS FIRST OBJECTIVE (I)

- STEP2 we compared the individual WTPs for each model;
- ➤ We then test the following hypothesis (for both $E[WTP_n]|WTP_n \neq 0$ and $E[WTP_n]|$):

$$H_{01}: (WTP_{nk,serial} - WTP_{nk,choicetask}) = 0,$$

$$H_{11}: (WTP_{nk,serial} - WTP_{nk,choicetask}) \neq 0$$

 \Rightarrow If H_{01} is rejected, we conclude that serial and choice task ANA produce significantly different WTPs.

EMPIRICAL ANALYSIS SECOND OBJECTIVE

Validation Model introduced by Hess and Hensher (2010): serial and choice task:

⇒Behavioral assumption: fully and partially compensatory choice behavior;

⇒If respondents provide valid self-reports on ANA, then these should be consistent with their choice behavior

EMPIRICAL ANALYSIS SECOND OBJECTIVE (I)

► Utility specification: Coefficients estimated for attended attributes. $U_{njt} = 1_{nk}(I = 1)[\beta_1^{1,*}] PRICE_{njt} + \beta_2^1 OrgEU_{njt} + \beta_3^1 OrgBE_{njt} + \beta_4^1 AW_{njt} + \beta_5^1 FR_{njt} + \beta_6^1 FRtrad_{njt} + \beta_7^1 FRtot_{njt} + \beta_8^1 CO20_{njt} + \beta_9^1 CO30_{njt}] + 1_{nk}(I = 0)[\beta_1^{0,*} PRICE_{njt} + \beta_2^0 OrgEU_{njt} + \beta_3^0 OrgBE_{njt} + \beta_4^0 AW_{njt} + \beta_5^0 FR_{njt} + \beta_6^0 FRtrad_{njt} + \beta_7^0 FRtot_{njt} + \beta_8^0 CO20_{njt} + \beta_9^0 CO30_{njt}] + \alpha_1 * Nobuy + 1_j(\eta_{nt}) + \varepsilon_{njt}$

Coefficients estimated for self reported ignored attributes.

 $\Rightarrow \beta_k^0$ statistically different from zero would indicate that respondents did not fully ignore these attributes.

EMPIRICAL ANALYSIS THIRD OBJECTIVE

Equality constrained latent class (ECLC) model: 16 classes

> Classes differ between each other for either having:

(a) **Different values of taste intensities** (β_{kc}) preference classes ; or

(b) different forms of ANA behavior within each preference class (.

We then used the *membership probability estimates* for each class to *calculate the frequencies of ANA* for each attribute.

EMPIRICAL ANALYSIS LATENT CLASS MODEL (I)

LAILNI CLASS WODE									Membership		
		PRICE	EU	BE	AW	FR	FO	FT	C2	C3	Prob (π_c)
	class1	b _{1 1}	b _{2 1}	$b_{3 1}$	b _{4 1}	b _{5 1}	b _{6 1}	b _{7 1}	b _{8 1}	b _{9 1}	π_1
	class2	b _{1 2}	0	0	0	0	0	0	0	0	π_2
	class3	0	b _{2 3}	b _{3 3}	0	0	0	0	0	0	π_3
Preference 1	class4	0	0	0	b _{4 4}	0	0	0	0	0	π_4
	class5	0	0	0	0	b _{5 5}	b _{6 5}	b _{7 5}	0	0	π_5
	class6	0	0	0	0	0	0	0	b _{8 6}	b ₉₆	π_6
	class7	0	0	0	0	0	0	0	0	0	π_7
	class8	b _{11 8}	b _{12 8}	b _{13 8}	b _{14 8}	b _{15 8}	b _{16 8}	$b_{17 8}$	$b_{18 8}$	b _{19 8}	π_8
	class9	0	b _{12 9}	b _{13 9}	b _{14 9}	b _{15 9}	b _{16 9}	b _{17 9}	b _{18 9}	b _{19 9}	π_9
Proforance ?	class10	b _{11 10}	0	0	b _{14 10}	b _{15 10}	b _{16 10}	b _{17 10}	b _{18 10}	b _{19 10}	π_{10}
Treference 2	class11	b _{11 11}	b _{12 11}	b _{13 11}	0	b _{15 11}	b _{16 11}	b _{17 11}	b _{18 11}	b _{19 11}	π_{11}
	class12	b _{11 12}	b _{12 12}	b _{13 12}	b _{14 12}	0	0	0	b _{18 12}	b _{19 12}	π_{12}
	class13	b _{11 13}	b _{12 13}	b _{13 13}	b _{14 13}	b _{15 13}	b _{16 13}	b _{17 13}	0	0	π_{13}
			I		ľ						
	class14	$b_{21 14}$	b _{22 14}	b _{23 14}	b _{24 14}	b _{25 14}	b _{26 14}	b _{27 14}	b _{28 14}	b _{29 14}	π_{14}
Preference 3	class15	b _{21 15}	b _{21 15}	b _{21 15}	0	0	0	0	b _{21 15}	b _{21 15}	π_{15}
	class16	b _{21 16}	0	0	b _{21 16}	b _{21 16}	b _{21 16}	b _{21 16}	0	0	$1-\sum \pi_c$
					•						

RESULTS ANA - DESCRIPTIVE STATISTICS (II)

Figure3. Attribute ignored by respondents, serial treatment

Only 17.7% of the respondents did not ignore any of the presented attributes.

RESULTS ANA - DESCRIPTIVE STATISTICS (IV)

Figure4. Attribute ignored by respondents, choice task treatment

RESULTS FIRST OBECTIVE: WTP ESTIMATES

Table1. Conditional WTP Estimates , Serial and Choice Task Experiments

	Serial Expe	eriment	Choice Task Experiment			
	Mean	n	Mean	n	T-test(pvalues)	
OrgEU	5.25	171	8.67	153	< 0.0000	
OrgBE	6.07	171	6.89	153	< 0.0692	
AW	3.86	174	5.82	159	< 0.0000	
FR	5.07	199	4.97	182	< 0.6566	
FRtrad	6.06	199	6.36	182	<0.2549	
FRtot	7.14	199	8.71	182	< 0.0002	
CO20	2.84	101	1.84	136	< 0.0120	
CO30	4.47	101	3.97	136	<0.4015	

⇒Only 3 out of 8 attributes show no difference in WTPs across treatments: FR, FRtrad, and CO30.

RESULTS FIRST OBECTIVE: WTP ESTIMATES (I)

Table 2. Unconditional WTP Estimates , Serial and Choice Task Experiments

	Serial Experiment	Choice Task	
	N=	N=	
	Mean	Mean	T-test (p-value)
OrgEU	2.61	5.16	< 0.0000
OrgBE	3.02	4.10	< 0.0026
AW	1.95	3.60	< 0.0000
FR	2.94	3.52	< 0.0171
FRtrad	3.51	4.50	< 0.0008
FRtot	4.13	6.17	< 0.0000
CO20	0.83	0.98	<0.4334
CO30	1.31	2.10	< 0.0057

=> Only for 1 label out of 8 there is a difference across serial and choice task treatment (CO2).

RESULTS SECOND OBEJACTIVE: VALIDATION MODEL

Table 3. Estimates from the Validation ANA model across Serial andChoice Task Experiments

	Con	sidered	Ign	ored
	Serial	Choice task	Serial	Choice task
Price	-0.26	-0.30	-0.05	-0.08
OrgEU	1.09	2.43	-0.07	-0.04
OrgBE	1.35	1.98	0.09	-0.41
AW	0.97	1.73	0.21	-0.08
FR	1.25	1.56	0.32	0.09
FRtrad	1.47	1.76	0.35	0.04
FRtot	1.89	2.54	0.49	0.18
CO20	0.70	0.46	0.18	0.10
<u>CO30</u>	1.20	1.13	0.42	-0.04

RESULTS THIRD OBECTIVE: ECLM MODEL Member.

										Memoer.	
	PRICE	EU	BE	AW	FR	FO	FT	C2	C3	Prob.	
class1	b _{1 1}	$b_{2 1}$	b _{3 1}	b _{4 1}	b _{5 1}	b _{6 1}	b _{7 1}	b _{8 1}	b _{9 1}	23.73	
class2	b _{1 2}	\bigcirc		0	0	0	0	0	0	14.93	
class3	0	b _{2 3}	b _{3 3}	0	0	0	0	0	0	0.07	
class4	0	0	0	b _{4 4}	0	0	0	0	0	3.69	
class5	0	0	0	0	b _{5 5}	b _{6 5}	$b_{7 5}$	0	0	4.16	
class6	0	0	0 /	0	0	0	0	b _{8 6}	b _{9 6}	2.35	
class7	0	0	0	0	0	0	0	0	0	5.21	
class8	b _{11 8}	b _{12 8}	b _{13 8}	b _{14 8}	$b_{15 8}$	b _{16 8}	$b_{17 8}$	$b_{18 8}$	b _{19 8}	2.34	=45.18%
class9	0	b _{12 9}	b _{13 9}	b _{14 9}	b _{15 9}	b _{16 9}	b _{17 9}	b _{18 9}	b _{19 9}	15.00	
class10	b _{11 10}	\bigcirc		b _{14 10}	b _{15 10}	b _{16 10}	b _{17 10}	b _{18 10}	b _{19 10}	0.07	
class11	b _{11 11}	b _{12 11}	b _{13 11}	0	b _{15 11}	b _{16 11}	b _{17 11}	b _{18 11}	b _{19 11}	0.10	
class12	b _{11 12}	b _{12 12}	b _{13 12}	b _{14 12}	0	0	0	b _{18 12}	b _{19 12}	6.04	
class13	b ₁₁₁₁₃	b _{12 13}	b _{13 13}	b _{14 13}	b _{15 13}	b _{16 13}	b _{17 13}	0	0	0.08	
						1					
class14	b _{21 14}	b _{22 14}	b _{23 14}	b _{24 14}	b _{25 14}	$b_{26 14}$	b _{27 14}	b _{28 14}	b _{29 14}	7.34	
class15	b _{21 15}	b _{21 15}	b _{21 15}	0	0	0	0	b ₂₁₁₁₅	b ₂₁₁₁₅	0.12	
class16	b _{21 16}	0	0	$b_{21 16}$	b ₂₁₁₁₆	$b_{21 16}$	b ₂₁₁₁₆	0	0	(14.77)	
				=-1-0							

RESULTS THIRD OBECTIVE: COMPARING SERIAL, CHOICE TASK AND INFERRED ANA

Table 6. Frequencies of stated ANA vs. inferred

Ignorance across	Serial	Choice Task	Inferred	<u>% serial</u>	<u>% C.task</u>
attributes	ANA%	ANA%	ANA %	<u>VS.</u>	<u>Vs.</u>
				<u>inferred</u>	<u>inferred</u>
Organic labels	50.29	41.83	45.18	11.31	-7.42
Animal welfare	49.42	39.49	26.94	83.44	46.60
Free-range claim	42.15	33.71	32.41	30.06	4.00
Carbon footprint	70.64	44.21	42.91	64.62	3.03
Price	25.58	20.43	30.48	-16.07	-32.98
Complete AA	17.73	34.58	33.41	-46.92	3.51
Complete ANA	7.60	5.60	5.21	45.87	7.49

RESULTS SUMMARY STATISTICS OF MODEL FIT

Table 7: Summary statistics of model fit

		Sei	rial	Choic	Inferred	
	AA	Standard	Validation	Standard	Validation	ECLC
		ANA	ANA	ANA	ANA	
N	2752	2752	2752	2056	2056	2752
LL	-1780	-1711	-1714	-1123	-1116	-1665
BIC/N	1.452	1.402	1.404	1.296	1.361	1.340
AIC/N	1.334	1.284	1.286	1.146	1.158	1.243
N. Par.	55	55	55	55	74	45

SUMMARY OF RESULTS

> Serial vs. Choice task

- 1) marginal willingness to pay estimates differ;
- 2) serial: low importance for most of the attributes;
- 3) choice task: for most attributes self-reported ANA statements are consistent with modeling results.
- > Inferred vs. Serial and choice task
 - 1) Choice task ANA statements are more concordant with inferred ANA behavior;

2) Choice task models show better model fit;

CONCLUSIONS

Due to importance of product differentiation in the global food industry, CE is now becoming one of the most popular preference elicitation methods used;

WTP estimates from CE used not just to make informed marketing and product adoption decisions but also for welfare analysis and policy making;

Given the effects of ANA behavior in terms of welfare estimates, it is important to examines how people process attribute information and how to capture and model ANA behavior.

CONCLUSIONS (I)

> Contribution to the literatures (research objectives).

- Respondents ignore attribute information. However, they seem not to have homogeneous attribute processing strategies;
- We find no clear support for measurement errors in choice task ANA, which shows more concordance with inferred ANA, and results in better model fit.
- The advantages of accounting for choice task ANA might outweigh its additional cost and effort.

FUTURE RESEARCH

Explore ANA behavior in both hypothetical and nonhypothetical experimental settings:

- \rightarrow Using different ex-ante hypothetical bias mitigation methods;
- \rightarrow *Using eye tracking data;*
- \rightarrow *Explore ANA at the attribute levels.*

Explore ANA behavior across different design dimensions (e.g. complexity, different range of levels, etc.)

THANK YOU FOR YOUR KIND ATTENTION

Any question, suggestion, etc. is welcome...

