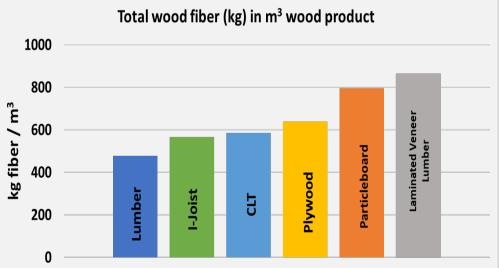
RECENT FINDINGS ON BUILDING-SCALE CARBON LCAS

Maureen Puettmann Director of Operations

maureen@corrim.org

CORRIM – CONSORTIUM FOR RESEARCH ON RENEWABLE INDUSTRIAL MATERIALS

Leading experts on wood product LCAs "The Go-to-Place for Wood LCA"


www.corrim.org

DECLARED VS. FUNCTIONAL UNITS

ENVIRONMENTAL PRODUCT DECLARATIONS

 m^3

INTERIOR WALL m²

WHOLE BUILDING LCA TNC STUDY PHASE I

- Comparative life cycle assessments of functionally equivalent mass timber and conventional buildings in Europe, China, Chile, and the US.
- We were to report the embodied carbon and carbon storage of mass timber utilization at the individual building level.

Comparative LCAs of Conventional and Mass Timber Buildings in Regions with Potential for Mass Timber Penetration

by A Maureen Puettmann 1,* . A Francesca Pierobon 2. Indroneil Ganguly 2. A Hongmei Gu 3. . A Hongmei Gu 3. . Cindy Chen 4 🖂 🙆 Shaobo Liang 3 🖾 🙆 Susan Jones 5 🖾 🙆 Ian Maples 5 🖾 and 🙆 Mark Wishnie 6 🖾

- ¹ The Consortium for Research on Renewable Industrial Materials, Corvallis, OR 97330, USA
- ² College of the Environment, University of Washington, Seattle, WA 98105, USA
- ³ USDA Forest Service, Forest Products Laboratory, Madison, WI 53726, USA
- ⁴ Population Research Center, Portland State University, Portland, OR 97201, USA
- ⁵ atelieriones LLC. Seattle, WA 98101, USA
- ⁶ BTG Pactual Timberland Investment Group, Seattle, WA 98107, USA
- Author to whom correspondence should be addressed.

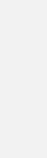
Academic Editor: Adriana Del Borghi

Sustainability 2021, 13(24), 13987; https://doi.org/10.3390/su132413987

United States

Mass Timber Building Life Cycle Assessment Methodology for the U.S. Regional Case Studies

by (2) Hongmei Gu 1,* 🖾 10 (2) Shaobo Liang 1 🖂 (2) Francesca Pierobon 2 🖂 (2) Maureen Puettmann 3 🖂 🙎 Indroneil Ganguly ² ☑ 🙋 Cindy Chen ⁴ ☑ 👰 Rachel Pasternack ⁵ ☑ 🚇 Mark Wishnie ⁶ ☑ 👰 Susan Jones ⁷ ☑ and


- ¹ Forest Products Laboratory, USDA Forest Service, Madison, WI 53726, USA
- ² School of Environmental and Forest Science, University of Washington, Seattle, WA 98105, USA
- ORRIM—The Consortium for Research on Renewable Industrial Materials, Corvallis, OR 97339, USA
- ⁴ Population Research Center, Portland State University, Portland, OR 97207, USA
- ⁵ The Nature Conservancy, Arlington, VA 22203, USA
- ⁶ BTG Pactual Timberland Investment Group, LLC, Seattle, WA 98199, USA
- atelieriones. Seattle. WA 98101. USA
- Author to whom correspondence should be addressed.

Academic Editor: Algirdas Jasinskas

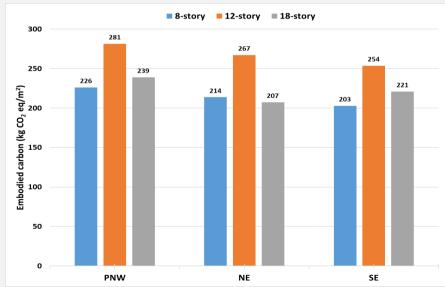
Sustainability 2021, 13(24), 14034; https://doi.org/10.3390/su132414034

METHODOLOGY

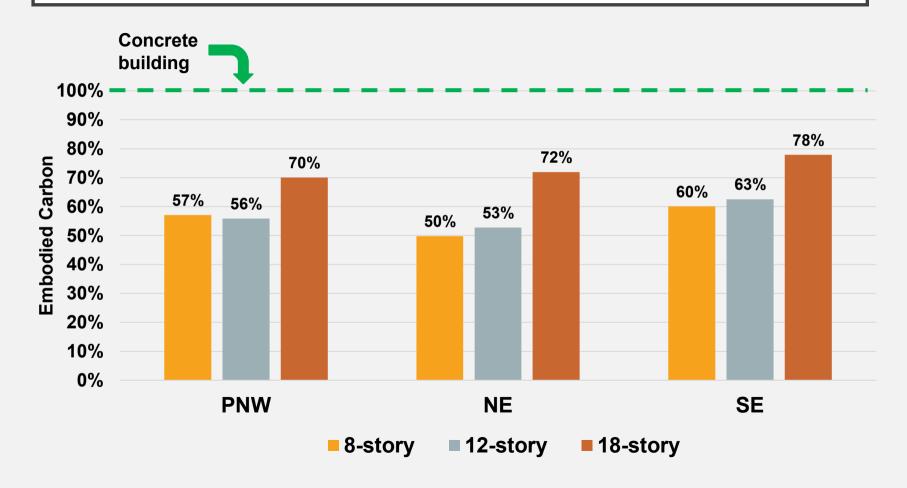
Stories	Building Height	Total Floor Area		
	meters	m ²		
8	26	9,476		
12	48	14,214		
18	71	21,321		

Mat footing 12 story

Piles and spread footing 18 Story


System Boundary						
PRODUCTION STAGE			CONSTRUC	TION STAGE		
A 1	A2	A4	A5			
Extraction and upstream production	Transport to factory	Manufacturing	Transport to site	Installation		

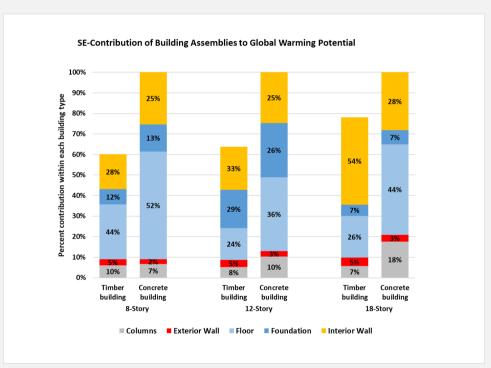
EMBODIED CARBON MASS TIMBER AND CONCRETE BUILDING


MASS TIMBER BUILDINGS

■ 8-story ■ 12-story ■ 18-story 250 Embodied Carbon (kg CO₂ eq/m²) 05 05 06 172 167 122 PNW SE NE

CONCRETE BUILDINGS

RESULTS - EMBODIED CARBON



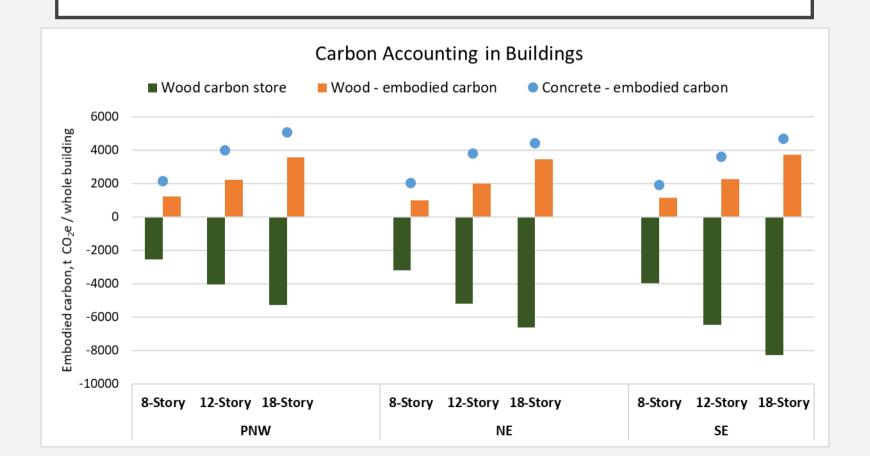
EMBODIED CARBON BY LIFE CYCLE STAGE NE BUILDINGS

NE Embodied Carbon kg CO₂e / m²

		A1-A3		A4		A5		Total	
8-story	Mass Timber building	90.7	85.2%	12.0	11.2%	3.7	3.5%	106.3	100.0%
	Concrete building	203.7	95.3%	2.7	1.3%	7.4	3.5%	213.8	100.0%
12-story	Mass Timber building	121.4	86.1%	14.2	10.1%	5.3	3.8%	141.0	100.0%
	Concrete building	254.0	95.1%	3.1	1.2%	9.9	3.7%	267.0	100.0%
18-story	Mass Timber building	130.0	87.2%	13.0	8.7%	6.1	4.1%	149.1	100.0%
18-5t01 y	Concrete building	196.3	94.6%	2.6	1.2%	8.6	4.1%	207.4	100.0%

CONTRIBUTION OF BUILDING ASSEMBLY TO TOTAL EMBODIED CARBON

Southeast – Interior Wall					
	Mass kg/m2	Composition by mass	Contribution to Embodied Carbon		
Concrete	158.7	50.7%	30.2%		
CLT	53.0	16.9%	17.3%		
Gypsum Wall board	89.3	28.5%	30.1%		
Insulation	1.9	0.6%	3.1%		
Other metals	0.9	0.3%	3.0%		
Rebar	9.5	3.0%	16.3%		


Table 4. Material contribution of the interior wall assembly for mass timber 18-story buildings from the Pacific Northwest, Northeast, and Southeast United States.

Material Used the Interior Walls	('0		Contribution to Embodied Carbon				
	Pacific Northwest						
Concrete	165.4	65.0%	32.8%				
CLT	0.0	0.0%	0.0%				
Gypsum wall board	75.3	29.6%	31.5%				
Insulation	1.5	0.6%	5.7%				
Other metals	2.9	1.1%	10.6%				
Rebar	9.5	3.7%	19.4%				
	Nor	theast					
Concrete	145.3	52.3%	32.9%				
CLT	39.4	14.20/0	11.0%				
Gypsum wall board	81.6	29.4%	32.7%				
Insulation	1.8	0.6%	3.3%				
Other metals	0.8	0.3%	3.1%				
Rebar	8.7	3.1%	17.0%				
	Sout	theast					
Concrete	158.7	50.7%	30.2%				
CLT	53.0	16.0%	17-3%				
Gypsum wall board	89.3	28.5%	30.1%				
Insulation	1.9	0.6%	3.1%				
Other metals	0.9	0.3%	3.0%				
Rebar	9.5	3.0%	16.3%				

WOOD PRODUCTS MANUFACTURING

Region	Main wood species	Species density	Lumber GWP	Electricity Production	
		kg/m³	kg CO ₂ eq./m ³	kg CO ₂ eq./kWh	
PNW	Douglas-fir & western hemlock	467	60.97	0.50	
NE	E. Spruce & white pine	434	46.78	0.30	
SE	Southern pine	510 85.03		0.80	

CRADLE TO GATE (A1-A5) CARBON ACCOUNTING

SUMMARY

- There are many opportunities for reducing embodied carbon of buildings
 - Material choices
 - Building designs
 - Improvements and updates to building codes to reflect actual risk
 - Consistency in reporting comparative results through education and outreach

- Local wood sources and products to reduce transportation impacts
- Long service life, reuse, and recycling potential
- Design for deconstruction
- Replacing fossil-based materials and fuels with renewable materials and fuels

WOOD BUILDINGS AS A CARBON MITIGATION STRATEGY

- Lower the Embodied Carbon
- Substitution Benefits
- Long service Life
- Re-use

THANK YOU

- For full suite of LCA product reports please visit <u>www.corrim.org/lcas-on-wood-products-library/</u>
- Papers related to this talk today Special Issue <u>Mass</u>
 Timber and Sustainable Building Construction

Maureen@corrim.org 541-231-2627