MSU International Development Working Papers

Green Revolution Technology Takes Root in Africa

The Promise and Challenge of the Ministry of Agriculture/SG2000 Experiment with Improved Cereals Technology in Ethiopia

Statistical Annex and Copies of Questionnaire by

Julie A. Howard, Valerie Kelly, Julie Stepanek, Eric W. Crawford, Mulat Demeke, and Mywish Maredia

GREEN REVOLUTION TECHNOLOGY TAKES ROOT IN AFRICA

THE PROMISE AND CHALLENGE OF THE MINISTRY OF AGRICULTURE/SG2000 EXPERIMENT WITH IMPROVED CEREALS TECHNOLOGY IN ETHIOPIA

STATISTICAL ANNEX AND COPIES OF QUESTIONNAIRE

by

Julie A. Howard, Valerie Kelly, Julie Stepanek, Eric W. Crawford, Mulat Demeke, and Mywish Maredia

May 1999

This paper is published by the Department of Agricultural Economics and the Department of Economics, Michigan State University (MSU). Funding for this research was provided by USAID/Ethiopia and the Food Security II Cooperative Agreement (AEP-5459-A-00-2041-00) between Michigan State University and the United States Agency for International Development, through Africa Bureau's Office of Sustainable Development, Productive Sector Growth and Environment Division (AFR/SD/PSGE).

Howard and Maredia are Visiting Assistant Professors, Kelly is Visiting Associate Professor, Stepanek is a doctoral candidate, and Crawford is Professor in the Department of Agricultural Economics, Michigan State University. Mulat Demeke is Professor in the Department of Economics, University of Addis Ababa.

ISSN

© All rights reserved by Michigan State University, 1999
Michigan State University agrees to and does hereby grant to the United States Government a royalty-free, non-exclusive and irrevocable license throughout the world to use, duplicate, disclose, or dispose of this publication in any manner and for any purposes and to permit others to do so.

Published by the Department of Agricultural Economics and the Department of Economics, Michigan State University, East Lansing, Michigan 48824-1039, U.S.A.

TABLE OF CONTENTS

APPENDIX 1: TECHNIQUES FOR YIELD ESTIMATION, AREA MEASUREMENT ANDFIRST ROUND QUESTIONNAIRES1
PART 1: YIELD ESTIMATION METHOD 2
PART 2: TECHNIQUES FOR FIELD AREA MEASUREMENT 3
PART 3: $1^{\text {ST }}$ ROUND QUESTIONNAIRES 12
APPENDIX 2: $2^{\text {ND }}$ ROUND QUESTIONNAIRES 22
APPENDIX 3: FINANCIAL BUDGETS 80
APPENDIX 4: ECONOMIC BUDGETS 93
PART 1: SUMMARY OF ECONOMIC BUDGETS FOR MAIZE AND TEFF 94
PART 2: CALCULATION OF ECONOMIC PRICES FOR MAIZE AND TEFF 97
PART 3: CALCULATION OF ECONOMIC PRICES FOR DAP AND UREA FERTILIZERS 101
REFERENCES 105

LIST OF TABLES

Table 27. Summary of Farm Level Enterprise Budgets for Maize (West Shoa), by Program Type81
Table 28. Summary of Farm Level Enterprise Budgets for Maize (Jimma), by Program Type 83
Table 29. Summary of Farm Level Enterprise Budget for Maize (West Shoa), by Technology Type 85
Table 30. Summary of Farm Level Enterprise Budget for Maize (Jimma), by Technology Type 87
Table 31. Summary of Farm Level Enterprise Budget for Tef (East Shoa), by Program Type 89
Table 32. Summary of Farm Level Enterprise Budget for Tef (East Shoa), by Technology Type 91
Table 33. Summary of Economic Budgets for Maize by Zone, Program Type and Input Level 94
Table 34. Summary of Economic Budgets for Teff by Zone, Program Type and Input Level 96
Table 35. Calculation of Import and Export Parity Prices for Maize 97
Table 36. Calculation of Import Parity Prices for Wheat 99
Table 37. Calculation of Import Parity Prices for DAP 103
Table 38. Calculation of Import Parity Prices for Urea 99

LIST OF FIGURES

Figure 2. Measuring Area for Convex and Concave Polygons 5

APPENDIX 1: TECHNIQUES FOR YIELD ESTIMATION, AREA MEASUREMENT AND FIRST ROUND QUESTIONNAIRES

PART 1: YIELD ESTIMATION METHOD

Maize. The method used for maize plot selection (2 sample plots per field) was as follows. ${ }^{1}$ First, enumerators asked the farmer to identify the center of the field, then stretched two ropes to transect the field at right angles. The ropes were marked with knots every 4 meters. Standing at the center of the field, the enumerator numbered the quadrants (\#1 quadrant is closest to the northwest, numbering continues clockwise). The enumerator then selected two of the four quadrants for the yield sample using a random number table. S/he next (for each selected quadrant) located the starting point for the 2 mx 4 m sample plot by using a random number table and starting from the corresponding knot on the rope. The enumerator marked the area with a 2 m x 4 m bamboo frame, set stakes and cordoned off the plot with twine. S/he then recorded the number of plants and maize ears in the plot, measured the between-plant and between-row spacing, and interviewed the farmer about soil fertility, plot history, and the farmer's expected yield from the plot.

Following sample plot marking, the farmer was asked to advise the enumerator when he was ready to harvest the field. On that day the enumerator and the farmer harvested the sample plot together, and the enumerator placed the ears in a bag and carried it to the extension agent's house for safekeeping. When the farmer finished harvesting his field he came to the extension agent's house to thresh the maize. The supervisor then weighed the grain sample, took a moisture reading and returned the grain to the farmer.

Tef. The selection of sample plots in tef fields was done in a slightly different way to minimize crop damage caused by walking in the field. Farmers first identified the boundary points for the field, the enumerator numbered the points (with the point closest to the northwest labeled \#1, and continuing clockwise) and used the random number table to identify a starting point. The farmer stood at this point and threw a ball of twine into the field (he was not told why). The point where the twine fell was the starting point for the $2 \mathrm{~m} \times 4 \mathrm{~m}$ quadrant, and the quadrant was marked with stakes and twine as above. After the tef in the sample plot was harvested it was taken to the extension agent's house to dry. Both the grain and straw were weighed. The farmer threshed the tef and the supervisor weighed and returned the grain to the farmers.

[^0]
PART 2: TECHNIQUES FOR FIELD AREA MEASUREMENT

FIELD AREA MEASUREMENT USING THE POLY PROGRAM FOR THE HP 48G CALCULATOR

by Donald Beaver and Julie Howard ${ }^{2}$

Part A: Notes on measuring and calculating farm area

1. Basics. The basic idea behind field area measurement is to identify the corners of the field, use a compass to take the bearing (from North) between consecutive (moving clockwise) points, and measure the side lengths between each of the points. The bearing and side length data will be entered into the HP 48 programmable calculators and area and the percent error will automatically be calculated (see Part B for instructions on using the calculators). The program works by dividing the field up into triangles, calculating the area of each triangle and summing them. The beauty of using the programmable calculators is that you can have the enumerators take the bearings and side measurements, then immediately check the area while everyone is still in the field. If the closing error is greater than 5%, the enumerators should redo the bearings and side measurements.
2. How to measure and record field area. Starting from point A (see Figure 2), use a compass to take the bearing to the next point (moving clockwise). We found it easiest to do this work in teams, with one person standing at point A taking the bearing to point B , and the second person standing at point B , if possible marking it with a long stick with a piece of cloth tied to it. As the second person walks from point A to point B he or she can also be taking the side measurement AB at the same time with the tape measure. And so on, around the field, one person stands at point B and takes the bearing to point C, the second person marks point C with a stick and cloth and measures BC side length, etc.

The enumerators should be very careful about how they record the bearings and corresponding side lengths (see Appendix 2). They also need to roughly sketch the shape of the field, marking the corners (A,B,C,D etc.). This is important because in some cases we will have concave rather than convex polygons (see Figure 2). For a convex polygon, it doesn't matter what point you start with when entering data into the HP48 program. If the polygon is concave, though, the starting point (that is, the first point that is entered into the HP48 program) MUST be the first point beyond the concavity, moving in a clockwise direction. Otherwise the program will overestimate the field area.

Some enumerators will have a natural aptitude for using a compass, others won't. We found it useful to spend a day training all enumerators in taking bearings and measuring side lengths, then we tested them to see how well they could read the bearings on their own. We chose the best

[^1]ones for specialized area measurement teams, and let the rest focus on other survey tasks.

Part B: Instructions for using HP 48G to determine farm plot area

a.. Turn the calculator ON by pressing ON key at lower left-hand corner of calculator.
b. Start the PLGY (POLYGON) program by pressing the white-capped key aligned with the "PLGY" name in the list at the bottom of the calculator display screen. If you don't see the name "PLGY" at the bottom of the screen, then press the "NXT" key (last righthand key in the second row of calculator keys, under the row of white-capped keys). If it still doesn't appear, press the VAR key, then press NXT again. If you have started the PLGY program successfully, you will see "Irregular Polygon Area--key requested data, PRESS ENTER (any key to start) on the screen.
c. Enter the number of decimals (in your side measurements), then press enter.
d. Enter the number of sides of the field, then press enter.
e. The program will prompt you to key in each angle.
f. The program will prompt you to key in the measurement of each side (in meters).
g. The program then automatically calculates the total AREA, and gives you the percent closing error. If the percent error is greater than 5\%, the field angles and sides should be re-measured.
h. The program will ask if you want to do ANOTHER RUN. Type is Y or N by pushing the alpha key ($4^{\text {th }}$ row from the bottom, $1^{\text {st }}$ key on the left) and then pressing the corresponding key with the letter " Y " or " N ," then enter.
i. To TURN THE CALCULATOR OFF, press the right-shift key (RS) (the green key located just above the ON button), then press OFF (same key as the ON key, with OFF written in green above.
j. If you make a mistake and want to reenter the data on that line, press CANCEL (the ON key).

1. EXAMPLE: Enter the following data (a rectangle of 2 hectares): Angles: 0,90,180,270. Enter each value followed by the ENTER key. Sides: 100,200,100,200. Enter each value followed by the ENTER key. Read Hectares: 2.00 and Percent Error: 0.00 in the display

For the convex polygon, data can be

polygon
For the concave polygon, starting from point A or C will include area not in the polygon for the first triangle. Any other C starting points will yield correct areas.

Figure 2. Measuring Area for Convex and Concave Polygons

The starting point must be adjusted manually for the concave case to prevent inclusion of extra area, or in very complex shaped concave polygons (more than one concavity), overlapping areas within it.

Part C: Notes on concave and convex polygons and formulas used in the HP48G POLY program

Entering Data:
For a convex polygon (see Figure 2), enter data for each angle and its corresponding side length, in meters, from any point, moving clockwise from that point until all data are entered.

For a concave polygon, enter data starting with the first point beyond the concavity in a clockwise direction, (point C Figure 2), and continue clockwise from there. When more than one concavity occurs. I suggest breaking the polygon into two or more polygons. Computing the area for each separately, and then add them.

Formula used for the HP48 program.

$$
\begin{aligned}
& A=\frac{1}{2} \sum_{i=1}^{n}\left(Y_{i} \Delta X_{i}-X_{i} \Delta Y_{i}\right)+\frac{Y_{n}}{\dot{n}} \sum_{i=1}^{\dot{n}} X_{i}-\frac{X_{n}}{\dot{n}} \sum_{i=1}^{n} Y_{i} \\
& \text { Where } \Delta X_{j}=X_{j} \operatorname{Sin} \alpha \text { and } \Delta Y_{j}=Y_{j} \operatorname{Cos} \alpha \\
& \text { and } \\
& \qquad X_{i}=\sum_{j=1}^{i} \Delta X_{j} \text { and } Y_{i}=\sum_{j=1}^{i} \Delta Y_{j} \\
& \text { for } \alpha_{j} \text { angles and } a_{j} \text { sides, with i verticies }
\end{aligned}
$$

The correction formula is:

$$
C=\frac{\sqrt{X_{n}^{2}+Y_{n}^{2}}}{\sum_{j=1}^{n} a_{j}} \cdot 100
$$

Part D: POLY Program

Key-Stroke Definitions: Special Symbols

HP48 Code	Key Strokes	HP48 Code	Key Strokes
:	RS, ::	CLEAR	LS, CLEAR
?	α, LS, \prec (or special chars)	CLLCD	PRG, NXT, OUT, CLLCD
()	LS, ()	DISP	PRG, NXT, OUT, DISP
\{\}	LS, \{\}	DO UNTIL END	PRG, BRCH, DO, (DO) (UNTIL) (END) same for any
$+-/ * \sqrt{ }$	FROM KEYBOARD	DUP	LS, STACK, NXT, DUP
= =	PRG, TEST, = =	FIX	LS, MODES, FMT, FIX
\#	PRG, TEST, \#	GET	PRG, LIST, ELEM, GET
«»	LS, <<>>	GETI	PRG, LIST, ELEM, GETI
،"	RS, ""	IF THEN ELSE	PRG, BRCH, IF, (IF) (THEN) (ELSE) Same for any
\%	$\alpha, \mathrm{RS}, \mathrm{U}$ (or special chars)	INPUT	PRG, NXT, IN, INPUT
α	Next key press a capital letter, ends automatically	OBJ \rightarrow	PRG, LIST, OBJ \rightarrow
$\alpha \alpha$	Next and subsequent key presses capital letters; end with α	SAME	PRG, TEST, NXT, SAME
$\alpha \alpha \operatorname{LS} \alpha$	all lower case letter, ends with α	SQ	LS, x^{2}
$\alpha \alpha$ LS α LS	First letter upper case, all rest lower case. (See Manual pg 2.4)	STO	STO
BEEP	PRG, NXT, OUT, NXT, BEEP		

RS = Right Shift key (lower left side, blue). LS = Left Shift key (lower left side, purple).
Entering a program using the LS «» keys shows in the HP48 as « program codes». The markers enclose the program. Sub programs within a program are similarly marked. When entering program codes, the editor automatically inserts codes between the symbols. The editor does the same for (), \{ \}, : :, and "" codes. I HAVE SHOWN THE CODES BELOW AS THEY APPEAR IN THE HP48 SCREEN. Most commands require a space, the SPC key, between them. When in doubt, put in a space. When entering letters in single or double quotes, after keying α to end letters, remember to key right cursor, RC , to move the cursor out of the quotes before entering the next command.
"BEEP" SUBROUTINE

HP48 Codes	Notes:
«	Key ENTER to save and end
1500 0.1 BEEP $[[$ at this point, key ENTER to save and end] $]$	Saved as TN
'TN' STO [[key to store program in a variable name $]]$	

INPUT SUBROUTINE

HP48 Codes	Notes:
« INPUT OBJ \rightarrow $» ~[[~ a t ~ t h i s ~ p o i n t, ~ k e y ~ E N T E R ~ t o ~ s a v e ~ a n d ~ e n d]] ~$	Key ENTER to save and end
'I' STO [[key to store program in a variable name]]	Saved as I

STARTUP PROGRAM: POLY

HP48 Codes	Notes:
«	Key ENTER to save
TN TN CLLCD " Irregular Polygon Area" 2 DISP " Key Requested Data,	and end.
PRESS ENTER" 4 DISP" (Any key to start)" 7 DISP 0 WAIT 0 FIX	
CLEAR 1 'TT' STO 1 'NN' STO TN "Decimals in Answer?" ":number:" I	
'D' STO TN REQA	
» [[at this point, key ENTER to save and end]]	
'POLY' STO [[key to store program in a variable name]]	

INPUT ANGLES SUBROUTINE: REQA

HP48 Codes	Notes;
"	
TN "How many sides?"' ":number:" I 'CC' STO 1 'TT' STO 1 'NN'	
STO	
WHILE ‘CC \neq TT-1'	
REPEAT TN "Key angle" NN + ‘‘:degrees:" I 1 NN STO+ 1 'TT'	
STO+ END CC \rightarrow LIST 'BNG' STO 1 'NN' STO 1 'TT' STO TN TN	
REQL	
» [[at this point, key ENTER to save and end]]	
'REQA' STO [[key to store program in a variable name]]	Saved as REQA

INPUT SIDE LENGTHS SUBROUTINE: REQL

HP48 Codes	Notes:
«	Key ENTER to save and
IF ‘CC \neq TT-1'	end.
THEN TN "Key Side" NN + '‘:length (m):" I 1 'NN' STO+	
1 'TT' STO	
REQL	
ELSE TN CC \rightarrow LIST 'LEN' STO LEN BNG SIN * 'XL' STO	
LEN BNG COS * 'YL' STO CLLCD	
'"Calculating. .." 4 DISP CALC1 END	
» [[at this point, key ENTER to save and end]]	
'REQL'STO [[key to store program in a variable name]]	Saved as REQL

SUBROUTINE CALC: CALC1

HP48 Codes	Notes:
$\begin{aligned} & \text { « } 1 \text { 'NN' STO XL NN GETI ‘XC' STO XC NN } \rightarrow \text { LIST ‘Xi' STO } \\ & \text { DO GETI XC + 'XC' STO Xi XC + 'Xi' STO } \\ & \text { UNTIL DUP } 1== \\ & \text { END } \end{aligned}$	Key ENTER to save and end.
$\begin{aligned} & \text { Xi } \\ & \text { «+ } \\ & \text { » STREAM 'XiS' STO } \end{aligned}$	
Xi CC GET ‘LSTXI' STO 1 'NN' STO YL NN GETI ‘YC' STO YC NN \rightarrow LIST 'Yi' STO	
DO GETI YC + 'YC' STO Yi YC + 'Yi' STO	
```UNTIL DUP 1= = END Yi » STREAM 'YiS' STO Yi CC GET 'LSTYI' STO FCALC D FIX CORCT```	
(Any key to cont.)" 7 DISP 0 WAIT TN TN CLLCD \{A PCNT SUM1 SUM2 SUML SUMX SUMY XiYL YiXL LSTYI LSTXI YiS XiS YC XC Yi Xi XL YL LEN BNG CC NN TT\} PURGE	
"ANOTHER RUN? (Y/N)" "" INPUT   IF "Y" SAME   THEN REQA   ELSE TN TN \{D\} PURGE CLLCD "PROGRAM OVER" 4 DISP 3   WAIT CLEAR END OFF   » [ [ at this point, key ENTER to save and end]]	
'CALC1' STO [[key to store program in a variable name ]]	Saved as CALC1

SUBROUTINE FINAL CALC: FCALC

HP48 Codes	Notes:
«	
Yi XL * 'YiXL' STO Xi YL* 'XiYL' STO YiXL XiYL - 'SUM1'	
STO SUM1	
«+	
»STREAM 'SUM2' STO SUM2 LSTYI CC / XiS * LSTXI CC / YiS	
$*-+2 / 10000 /$ 'A' STO	
» [ [at this point, key ENTER to save and end ]]	
'FCALC' STO [[key to store program in a variable name ]]	Saved as FCALC

## SUBROUTINE CORRECT: CORCT

HP48 Codes	Notes:
```«LEN < + STREAM ‘SUML’ STO XL \(+\) STREAM 'SUMX' STO YL + STREAM 'SUMY' STO SUMX SQ SUMY SQ + \(\sqrt{ }\) SUML / 100 * 'PCNT' STO CLEAR CLLCD " Area is: " 2 DISP A " Hectares" +3 DISP "Percent error:" PCNT + "\%" + 5 DISP » [[ at this point, key ENTER to save and end]]```	
'CORCT' STO [[key to store program in a variable name]]	Saved as CORCT

Part E: Area Measurements from Ethiopia to use for practice with the HP 48/Poly Program

Farm No.	Side	Bearing	Length	Area	Error
301	AB	82	48.15	0.59	2.54
	BC	156	24.05	0.58	2.54
	CD	183	44.8	0.58	2.54
	DE	205	72.8	.6	2.54
	EF	306	39.7		
	FG	9	39.45		2.54
	GH	17	31.04	.6	
	HA	358	28.74	.509	.162
	AB	102	90.8	.509	.162
	BC	202	58	.51	.162
	CD	279	65.68	.511	.162
	DE	355	18.6	.51	.162
	EF	282	14.21	.51	.162
	FG	5	31.6	14.33	

PART 3: $1^{\text {ST }}$ ROUND QUESTIONNAIRES

Ministry of Economic Development and Cooperation
 Grain Marketing Research Project
 with the collaboration of Sasakawa-Global 2000

Survey of Input Utilization and Marketing in the Smallholder Sector (Part I)

(October-November 1997)

Zone

Woreda

Farmer Association
FA

Household Number HH

Farmer Name
Enumerator
\qquad WOR \qquad FA \qquad HH __QTYPE_

1. Maize Plot

Field Map: Using a compass and tape, measure all sides and angles of the field. Sketch the field below, noting side and angle measurements.

Points	AB	BC	C -	D -	E-	F-	G-	H-	I-	J-	K-
Bearing (degrees)											
Si de me a sure m ent (me ters)											

Total area of field \qquad (square meters)

Coordinates:
North
E ast \qquad
\qquad WOR \qquad FA \qquad
\qquad _QTYPE_

1. Maize Plot

Table 1. Description of the Maize Field

*
1.tef 2.maize 3. wheat 4.barley 5. sorghum
6.millet 7.pulses 8 . oilseeds $9 . f$ fallow 10. other (specify)
\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad

1. Maize Plot

Table 2. Plot History

**
1.tef 2.maize 3.wheat 4.barley 5. sorghum
6.millet 7.pulses 8. oilseeds 9.fallow 10.other (specify)

1. Maize Plot

\qquad WOR \qquad
\qquad
\qquad HH \qquad QTYPE__

Table 3. Sample Plot Data for Yield Estimation

Selected 2×4 meter plot	No. plants	No. ears	Distance between plants (cm)	Distance between rows (cm)	No. seeds/hill	Amt. of fertilizer used per hill during planting (basal)		Amt. of fertilizer used per hill as a top dressing		Weight of grain after harvest (kg)	Moisture content (\%)
						Qt.	$\begin{aligned} & \text { Units } \\ & \text { 1.Coke cap } \\ & \text { 2.spoon } \\ & \text { 3.other (specify) } \end{aligned}$	Qt	Units 1.Coke cap 2.spoon 3.other (specify)		
IIII	III6	III7	III8	III9	III10	III11	III12	III13	III14	III3	III5
1											
2											

Ministry of Economic Development and Cooperation

Grain Marketing Research Project
with the collaboration of Sasakawa-Global 2000

Survey of Input Utilization and Marketing in the Smallholder Sector (Part I)

(October-November 1997)
a. (Tef) - QTYPE

Zone

\qquad ZON
Woreda \qquad WOR

Farmer Association FA

Household Number HH

Farmer Name
Enumerator
ENUM
\qquad WOR \qquad FA _ HH \qquad _QTYPE_

1. Tef Plot

Field Map: Using a compass and tape, measure all sides and angles of the field. Sketch the field below, noting side and angle measurements.

Points	AB	BC	C -	D -	E-	F-	G-	H-	I-	J-	K-
Bearing (degrees)											
Si de me asure m e nt (me t e rs)											

Total area of field \qquad (square meters)

Coordinates:
North
E ast
\qquad WOR \qquad FA _ HH
\qquad _QTYPE__

1. Tef Plot

Table 1. Description of the Tef Field

1.tef	2.maize	3. wheat	4.barley	5. sorghum
6.millet	7.pulses	8. oilseeds	9.fallow	10.other (specify)

\qquad WOR \qquad FA \qquad
\qquad _QTYPE \qquad

1. Tef Plot

Table 2. Plot History

What crops were planted in this field?** (use codes below)				Use of fertilizer and manure											
				95/96			94/95			93/94			92/93		
95/96	94/95	93/94	92/93	DAP	Urea	$\begin{gathered} \text { Manur } \\ \mathrm{e} \end{gathered}$	DAP	Urea	$\begin{gathered} \text { Manur } \\ \mathrm{e} \end{gathered}$	DAP	Urea	$\begin{gathered} \text { Manur } \\ \mathrm{e} \end{gathered}$	DAP	Urea	$\begin{gathered} \text { Manur } \\ \mathrm{e} \end{gathered}$
II1	II1	II1	II1	II2	II3	II4									

**

1.tef	2.maize	3. wheat	4.barley	5. sorghum
6.millet	7.pulses	8. oilseeds	9.fallow	10.other (specify)

\qquad WOR \qquad FA HH \qquad _QTYPE_

Table 3. Sample Plot Data for Yield Estimation

Selected 2×4 meter plot	Weight of grain and straw before threshing (kgs)	Weight after threshing (kgs)		Moisture content(\%)
		Grain	Straw	
III1	III2	III3	III4	III5
1				
2				

APPENDIX 2: $2^{\text {ND }}$ ROUND QUESTIONNAIRES

MINISTRY OF ECONOMIC DEVELOPMENT AND COOPERATION GRAIN MARKETING RESEARCH PROJECT
 with the collaboration of
 Sasakawa-Global 2000

Survey of Input Utilization and Marketing in the Smallholder Sector - PART II October-November 1997

CURRENT SG PARTICIPANT: MAIZE

\qquad

Zone		
Woreda		ZON
Farmer Association		WOR
Household Number		FA
HH		

Name of Farmer

Enumerator \qquad ENUM

In what years have you participated in the SG2000 program (mark all appropriate)? No=0 Yes=1

96/97 season (this season)?
95/96 season?
 S9697

94/95 season?

93/94 season?
S9495

92/93 season?
\qquad
S9394

In what years have you participated in the government extension program (mark all appropriate)? $\mathrm{No}=0$ Yes=1
96/97 season (this season)? P9697
95/96 season?
94/95 season?
93/94 season?
AF1

P9596
P9495
P9394
Household head's level of education
0 Illiterate
$1,2, \ldots 12$ Last year of school completed
99 Did not attend public school, but knows how to read and write (includes religious school)
\qquad WOR \qquad _FA \qquad HH \qquad QTYPE \qquad ENUM \qquad

PART I. THE FARM

Table IV. AREA AND INPUT USE ON MAJOR CROPS IN MEHER SEASON

\qquad WOR \qquad _FA \qquad _HH \qquad QTYPE \qquad ENUM \qquad
Table IV. AREA AND INPUT USE ON MAJOR CROPS IN MEHER SEASON (CON’T)

YEAR	CROP \#2															
	CROP	Area - Own Land		Area - Rented, Sharecropped or Borrowed Land		Input \#1			Input \#2			Input \#3			Input \#4	
	(use codes below)	No.	$\begin{aligned} & \text { Unit } \\ & 1=\text { timad } \\ & 2=\text { kert } \\ & 3=\text { ha } \\ & 4=\text { fachasa } \\ & 20=o t h e r \\ & \text { (specify) } \end{aligned}$	No.	Unit 1=timad 2=kert 3=ha 4=fachasa 20=other (specify)	$\begin{aligned} & \text { Type } \\ & \text { ** } \\ & \text { (use codes } \\ & \text { below) } \end{aligned}$	Qty.	$$	$\begin{array}{\|l} \text { Type } \\ * * \\ \text { (use codes } \\ \text { below) } \end{array}$	Qty.	$$	$\begin{aligned} & \text { Type } \\ & * * \\ & \text { (use codes } \\ & \text { below) } \end{aligned}$	Qty.	$$	$\begin{aligned} & \text { Type } \\ & * * \\ & \text { (use codes } \\ & \text { below) } \end{aligned}$	Qty.
YEAR	CROP	IV1	IV2	IV3	IV4	IV5	IV6	IV7	IV8	IV9	IV10	IV11	IV12	IV13	IV14	IV15
9697																
9596																
9495																
9394																
9293																
* Crop Codes:																
$\begin{aligned} & 1=\text { tef } \\ & 6=\text { millet } \end{aligned}$	naize pulses	$\begin{aligned} & 3=\text { wheat } \\ & 8=\text { oilseeds } \end{aligned}$	$\begin{aligned} & \text { 4=barley } \\ & 20=\text { other (sp } \end{aligned}$	orgh fy)												
$\begin{aligned} & * * \text { Input Ty } \\ & \text { 100=Seed } \\ & \text { 500=herbic } \end{aligned}$	Codes tment			impro field i		$\begin{aligned} & 300=1 \\ & \mathbf{7 0 0}= \end{aligned}$	$\text { AP } 4$ orage	cide800=fun	icide							

\qquad WOR \qquad _FA \qquad _HH \qquad QTYPE \qquad ENUM \qquad

Table IV. AREA AND INPUT USE ON MAJOR CROPS IN MEHER SEASON (CON'T)

YEAR	CROP \#3															
	CROP	Area - Own Land		Area - Rented, Sharecropped or Borrowed Land		Input \#1			Input \#2			Input \#3			Input \#4	
	(use codes below)	No.	$\begin{aligned} & \text { Unit } \\ & 1=\text { timad } \\ & 2=\text { kert } \\ & \text { 3=ha } \\ & \text { 4=fachasa } \\ & \text { 20=other } \\ & \text { (specify) } \end{aligned}$	No.	$\begin{aligned} & \text { Unit } \\ & 1=\text { timad } \\ & 2=\text { kert } \\ & 3=\text { ha } \\ & 4=\text { fachasa } \\ & 20=\text { other } \\ & \text { (specify) } \end{aligned}$	$\begin{aligned} & \text { Type } \\ & * * \\ & \text { (use codes } \\ & \text { below) } \end{aligned}$	Qty.	$$	$\begin{aligned} & \text { Type } \\ & * * \\ & \text { (use codes } \\ & \text { below) } \end{aligned}$	Qty.	$$	$\begin{aligned} & \text { Type } \\ & \text { ** } \\ & \text { (use codes } \\ & \text { below) } \end{aligned}$	Qty.	$$	$\begin{aligned} & \text { Type } \\ & \text { ** } \\ & \text { (use codes } \\ & \text { below) } \end{aligned}$	Qty.
YEAR	CROP	IV1	IV2	IV3	IV4	IV5	IV6	IV7	IV8	IV9	IV10	IV11	IV12	IV13	IV14	IV15
9697																
9596																
9495																
9394																
9293																
* Crop Codes:																
$\begin{aligned} & 1=\text { tef } \\ & 6=\text { millet } \end{aligned}$	maize pulses	$\begin{aligned} & 3=\text { wheat } \\ & 8=\text { oilseeds } \end{aligned}$	$\begin{aligned} & \text { 4=barley } \\ & 20=\text { other (spe } \end{aligned}$	orgh fy)												
$\begin{aligned} & * * \text { Input Ty } \\ & \text { 100=Seed } \\ & \text { 500 }=\text { herbic } \end{aligned}$	Codes atment e			impro field		$\begin{aligned} & \mathbf{3 0 0}=1 \\ & \mathbf{7 0 0}= \end{aligned}$	$\begin{aligned} & \text { AP } 4 \\ & \text { torage } \end{aligned}$	$\text { cide } 800=\text { funs }$	icide							

\qquad WOR \qquad _FA \qquad HH \qquad QTYPE \qquad ENUM \qquad
Table IV. AREA AND INPUT USE ON MAJOR CROPS IN MEHER SEASON

YEAR	CROP \#4															
	CROP	Area - Own Land		Area - Rented, Sharecropped or Borrowed Land		Input \#1			Input \#2			Input \#3			Input \#4	
	(use codes below)	No.	$\begin{aligned} & \text { Unit } \\ & \text { 1=timad } \\ & 2=\text { kert } \\ & \text { 3=ha } \\ & \text { 4=fachasa } \\ & \text { 20=other } \\ & \text { (specify) } \end{aligned}$	No.	$\begin{aligned} & \text { Unit } \\ & \text { 1=timad } \\ & 2=\text { kert } \\ & \text { 3=ha } \\ & \text { 4=fachasa } \\ & 20=\text { other } \\ & \text { (specify) } \end{aligned}$	$\begin{aligned} & \text { Type } \\ & * * \\ & \text { (use codes } \\ & \text { below) } \end{aligned}$	Qty.	$$	$\begin{aligned} & \text { Type } \\ & * * \\ & \text { (use codes } \\ & \text { below) } \end{aligned}$	Qty.	$$	$\begin{aligned} & \text { Type } \\ & * * \\ & \text { (use codes } \\ & \text { below) } \end{aligned}$	Qty.	Unit $\begin{aligned} & 1=50 \mathrm{~kg} \\ & 2=100 \mathrm{~kg} \\ & 3=\mathrm{kg} \\ & 4=\text { liter } \\ & 20=0 \text { other } \\ & \text { (specify) } \end{aligned}$	$\begin{aligned} & \text { Type } \\ & \text { ** } \\ & \text { (use codes } \\ & \text { below) } \end{aligned}$	Qty.
YEAR	CROP	IV1	IV2	IV3	IV4	IV5	IV6	IV7	IV8	IV9	IV10	IV11	IV12	IV13	IV14	IV15
9697																
9596																
9495																
9394																
9293																
* Crop Codes:																
$\begin{aligned} & 1=\text { tef } \\ & 6=\text { millet } \end{aligned}$	maize	$\begin{aligned} & 3=\text { wheat } \\ & 8=\text { oilseeds } \end{aligned}$	$\begin{aligned} & \text { 4=barley } 5 \\ & 20=\text { other (sp } \end{aligned}$	orgh ify)												
** Input Ty $100=$ Seed t $500=$ herbic	Codes tment			impro field		$\begin{aligned} & 300=1 \\ & 700= \end{aligned}$	$\text { AP } 4$	cide800=funs	icide							

\qquad WOR \qquad _FA \qquad HH \qquad QTYPE \qquad ENUM \qquad
Table IV. AREA AND INPUT USE ON MAJOR CROPS IN MEHER SEASON (CON'T)

YEAR	CROP \#5															
	CROP	Area - Own Land		Area - Rented, Sharecropped or Borrowed Land		Input \#1			Input \#2			Input \#3			Input \#4	
	(use codes below)	No.	$\begin{aligned} & \text { Unit } \\ & 1=\text { timad } \\ & 2=\text { kert } \\ & 3=\text { ha } \\ & 4=\text { fachasa } \\ & 20=o t h e r \\ & \text { (specify) } \end{aligned}$	No.	$\begin{aligned} & \text { Unit } \\ & 1=\text { timad } \\ & 2=\text { kert } \\ & \text { 3=ha } \\ & \text { 4=fachasa } \\ & \text { 20=other } \\ & \text { (specify) } \end{aligned}$	$\begin{aligned} & \text { Type } \\ & * * \\ & \text { (use codes } \\ & \text { below) } \end{aligned}$	Qty.	$$	$\begin{aligned} & \text { Type } \\ & * * \\ & \text { (use codes } \\ & \text { below) } \end{aligned}$	Qty.	$$	$\begin{aligned} & \text { Type } \\ & \text { ** } \\ & \text { (use codes } \\ & \text { below) } \end{aligned}$	Qty.	$$	$\begin{aligned} & \text { Type } \\ & \text { ** } \\ & \text { (use codes } \\ & \text { below) } \end{aligned}$	Qty.
YEAR	CROP	IV1	IV2	IV3	IV4	IV5	IV6	IV7	IV8	IV9	IV10	IV11	IV12	IV13	IV14	IV15
9697																
9596																
9495																
9394																
9293																
* Crop Codes:																
$\begin{aligned} & 1=\text { tef } \\ & 6=\text { millet } \end{aligned}$	maize	$\begin{aligned} & 3=\text { wheat } \\ & 8=\text { oilseeds } \end{aligned}$	$\begin{aligned} & \text { 4=barley } \\ & \text { 20=other (sp } \end{aligned}$	orgh ify)												
$\begin{aligned} & * * \text { Input Ty } \\ & \text { 100=Seed } \mathrm{t} \\ & \text { 500=herbic } \end{aligned}$	Codes atment			impro field		$\begin{aligned} & \mathbf{3 0 0}=1 \\ & \mathbf{7 0 0}= \end{aligned}$		$\text { cide } 800=\text { fun }$								

\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad

Table IV. AREA AND INPUT USE ON MAJOR CROPS IN MEHER SEASON (CON’T)

YEAR	FALLOW/GRAZING AREA				
	CROP/ LAND USE type	Area - Own Land		Area - Rented, Sharecropped or Borrowed Land	
	(use codes below)	No.	Unit 1=timad $2=$ kert 3=ha 4=fachasa 20=other (specify)	No.	$\begin{aligned} & \text { Unit } \\ & 1=\text { timad } \\ & 2=\text { kert } \\ & 3=\text { ha } \\ & 4=\text { fachasa } \\ & 20=\text { other } \end{aligned}$
YEAR	CROP	IV1	IV2	IV3	IV4
9697	11				
9596	11				
9495	11				
9394	11				
9293	11				
* Crop Codes:					
$\begin{aligned} & 1=\text { tef } \\ & 6=\text { millet } \end{aligned}$	$\begin{aligned} & \text { naize } \\ & \text { pulses } \end{aligned}$	3=wheat 8=oilseeds	4=barley 11=fallow	$\begin{aligned} & \text { sorghu } \\ & \text { =othe } \end{aligned}$	
** Input Type Codes $100=$ Seed treatment 500=herbicide			200=improved seed 600=field insecticide		

[^2]\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad

Has the total area (owned, rented, sharecropped or borrowed) planted to maize changed between 1992-93 and the current season?
$0=$ no change
1 = area planted to maize has increased slightly
2 = area planted to maize has increased significantly
3 = area planted to maize has decreased slightly
4 = area planted to maize has decreased significantly
If there was a change in maize area between 1992-93, give the three most important reasons for the area increase/decrease in order of importance:

AF3
AF4 \qquad
AF5 \qquad
\qquad Do you plan to increase, decrease or maintain the area planted to maize during the 1997-98 season (next season?)
$0=$ no change
$1=$ will slightly increase area planted to maize
$2=$ will increase area planted to maize significantly
$3=$ will slightly decrease area planted to maize
$4=$ will decrease area planted to maize significantly
If you plan to increase or decrease the area planted to maize next season, give the three most important reasons why:
AF7
A8
AF9
\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad
Table V. LIVESTOCK HOLDINGS

YEAR	LIVESTOCK 1		LIVESTOCK 2		LIVESTOCK 3		LIVESTOCK 4		LIVESTOCK 5		LIVESTOCK 6		LIVESTOCK 7	
	Type (use codes below)	No.	Type (use codes below)	No.	Type (use codes below)	No.	Type (use codes below)	No.	Type (use codes below)	No.	Type (use codes below)	No.	Type (use codes below)	No.
YEAR	LIVE	NO												
9697														
9596														
9495														
9394														
9293														

* Livestock type codes		
1 $=$ plowing oxen 4= calves $(<2$ years $)$ $5=$ horses	2= steers 7	3= cows/heifers

\qquad WOR \qquad FA HH _QTYPE \qquad ENUM \qquad
PART II. THE HOUSEHOLD
Table VI. DEMOGRAPHIC DATA ABOUT THE HOUSEHOLD*

Name	No.	Relationship to household head 1 household head 2 spouse 3 son/daughter 4 father/ mother 5 other relative 6 hired help eating with the household 7 other (specify)	Age**	$\begin{array}{\|ll} & \text { Sex } \\ 1 \mathrm{~mm} & \\ 2 \mathrm{f} & \end{array}$
	NO	VI1	VI2	V13
(Household head)	1	1		
	2			
	3			
	4			
	5			
	6			
	7			
	8			
	9			
	10			
	11			
	12			
	13			
	14			

\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad

NOTES FOR ENUMERATORS

* The HOUSEHOLD is defined as persons living in the same compound who regularly eat together.
** AGE variable

1. Enumerators should first ask household helds for the exact age of household members in years.
2. The age of children less than 1 year of age (e.g., 3 months) should be recorded as "1."
3. If household heads cannot recall the exact age of household members, prompt for the birth year using the following list of significant historical events:
4. If household heads still cannot recall the birth year, as a last resort categorize the age of family members as follows:
$101=<7$ years of age
$102=(>=7,<=8)$
$103=(>=9,<=12)$
$104=(>=13,<=15)$
$105=(>=16,<=54)$
$106=(>=55)$
\qquad WOR \qquad FA \qquad HH \qquad QTYPE ENUM \qquad

PART III. THE SG2000 PROGRAM MAIZE PLOT 1
WORKSHEET: MAIZE FIELD ACTIVITIES

Activity	Power Source$\begin{aligned} & \text { 1=Tractor } \\ & \text { 2=Animal } \\ & \text { 3=Human } \\ & \text { 4=Human and } \\ & \text { Animal } \end{aligned}$	When was it carried out?	
		Month $(1,2, \ldots, 12$ or indicate that not done $)$	$\begin{aligned} & \text { Week (START DATE)* } \\ & (\mathbf{1 , 2 , 3 , 4)} \end{aligned}$
1 Seed treatment			
2 Clearing new land			
3 Removing crop stubble			
4 Bund making			
11 $2^{\text {nd }}$ Plowing 12			
$12.33^{\text {rd }}$ Plowing			
$134^{\text {th }}$ Plowing			
14 $5^{\text {th }}$ Plowing 16			
16 Plowing for planting/making rows			
20 Planting seeds			
21 Planting seeds and $1^{\text {st }}$ application of fertilizer (DAP and/or Urea) AT THE SAME TIME			
$30 \quad 1^{\text {st }}$ application of fertilizer (DAP			
22 Covering seeds			
23 Trampling/leveling			
40 Application of herbicide			
$41 \quad 11^{\text {st }}$ weeding			
43 Thinning			
44 Cultivation			
$31 \quad 22^{\text {nd }}$ application of fertilizer (Urea)			
$42 \quad 2^{\text {nd }}$ weeding			
$50 \quad 11^{\text {st }}$ application of insecticide			
$51 \quad 2{ }^{\text {nd }}$ application of insecticide			
$601^{\text {st }}$ application of fungicide			
$61 \quad 2{ }^{\text {nd }}$ application of fungicide			
70 Harvest			
80 Transport to threshing area			
91 Dehusking/shelling			
81 Transport to storage area			
100 Other (specify)			

* Enumerators should try to get the farmer to recall the specific WEEK in which the activity was carried out. If the farmer cannot remember the week, prompt for a 2-week period and record this as e.g., WEEK 1-2, WEEK 3-4.
\qquad
\qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad
Table VII. LABOR USED IN THE SG2000 PROGRAM MAIZE PLOT 1

\qquad WOR \qquad
\qquad HH \qquad QTYPE \qquad ENUM \qquad

Table VIII. INPUTS USED IN THE SG2000 PROGRAM MAIZE PLOT ___ 1

Input	How much was used? (For animals/tractor no.days/hrs)		Did you pay cash or in kind for this input?	How did you get it?	When was it applied? (Copy dates from field worksheet)		How much did it cost?					Did you pay immediately after receiving the input or did you receive credit? 1 immediate payment 2 Credit 3 Both (indicate amt. input received on credit)
	Qt	Unit $1=50 \mathrm{~kg}$ $2=100 \mathrm{~kg}$ $3=\mathrm{kg}$ $4=$ liter $5=$ oxen-days $6=$ tractor hours $7=$ tractor ha 20= other (specify)					Cash (Birr)	In-Kind Payment				
			0 no (skip to the next input) 1 yes (proceed to next column)	1 SG2000/ Gov't extension program 2 Trader/Market 3 Rented (animals/tracto r) 4 Own/Saved 20 Other (specify)	$\begin{array}{\|l} \hline \text { Month } \\ (1,2, \ldots 1 \\ 2) \end{array}$	Week $(1,2,3,4)$		Type 1=tef 2=maize 3=wheat 4=barley $5=$ sorghum $6==$ millet $\quad 7=$ pulses $8=$ oilseeds 20=other (specify)	Qty.	\quad Unit $1=50 \mathrm{~kg}$ $2=100 \mathrm{~kg}$ $3=\mathrm{kg}$ 4=liter $5=$ oxen- days $20=o t h e r$ (specify)	Est. Total Value in Birr	
INPUT	VIII1	VIII2	VIII3	VIII4	VIII5	VIII6	VIII7	VIII8	VIII9	VIII10	VIII11	VIII12
100 Seed Treatment Type \qquad Type \qquad												
200 Seed Variety (ies)												
Animal Traction												
4 Making Bunds												
10 First Plowing												
11 Second Plowing												
12 Third Plowing												
13 Fourth Plowing												
14 Fifth Plowing												
16 Plowing for planting/making rows												
23 Trampling/leveling												
44 Cultivation												

3. CURRENT SG2000 PROGRAM PARTICIPANT / MAIZE \qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad

Input	How much was used? (For animals/tractor no.days/hrs)		Did you pay cash or in kind for this input?	How did you get it? 1 SG2000/	When was it applied? (Copy dates from field worksheet)		How much did it cost?					Did you pay immediately after receiving the input or did you receive credit? 1 immediate payment 2 Credit 3 Both (indicate amt. input received on credit)
	Qt	$$					Cash (Birr)	In-Kind Payment				
			0 no (skip to the next input) 1 yes (proceed to next column)	1 SG2000/ Gov't extension program 2 Trader/Market 3 Rented (animals/tracto r) 4 Own/Saved 20 Other (specify)	Month $\text { \|(1,2,... } 1$ 2)	$\begin{aligned} & \text { Week } \\ & (1,2,3,4) \end{aligned}$		Type 1=tef 2=maize 3=wheat 4=barley 5=sorghum $6==$ millet $\quad 7=$ pulses $8=$ =oilseeds 20=other (specify)	Qty.		Est. Total Value in Birr	
INPUT	VIII1	VIII2	VIII3	VIII4	VIII5	VIII6	VIII7	VIII8	VIII9	VIII10	VIII11	VIII12
80 Transport to threshing area												
91 Shelling												
81 Transport to storage area												
Tractor												
10 First Plowing												
11 Second Plowing												
Other Inputs												
300 DAP Fertilizer												
400 Urea Fertilizer												
500 Herbicide Type/form.												
600 Field Insecticide Type/form.												

3. CURRENT SG2000 PROGRAM PARTICIPANT / MAIZE

ZON \qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad

Input	How much was used? (For animals/tractor no.days/hrs)		Did you pay cash or in kind for this input?	How did you get it? 1 SG2000/	When was it applied? (Copy dates from field worksheet)		How much did it cost?					Did you payimmediatelyafterreceivingthe input ordid youreceivecredit?1 immediatepayment2 Credit3 Both(indicateamt. inputreceived oncredit)
	Qt	Unit $1=50 \mathrm{~kg}$ $2=100 \mathrm{~kg}$ $3=\mathrm{kg}$ $4=$ liter $5=0$ oxen-days $6=$ tractor hours $7=$ tractor ha 20=other (specify)					Cash (Birr)	In-Kind Payment				
			0 no (skip to the next input) 1 yes (proceed to next column)	1 SG2000/ Gov't extension program 2 Trader/Market 3 Rented (animals/tracto r) 4 Own/Saved 20 Other (specify)	$\begin{aligned} & \text { Month } \\ & (1,2, \ldots 1 \\ & 2) \end{aligned}$	Week $(\mathbf{1 , 2 , 3 , 4})$		Type 1=tef 2=maize $3=$ wheat 4=barley $5=$ sorghum $6==$ millet $\quad 7=$ pulses $8=o$ oilseeds $20=o t h e r$ (specify)	Qty.	\quad Unit $1=50 \mathrm{~kg}$ $2=100 \mathrm{~kg}$ $3=\mathrm{kg}$ $4=$ liter $5=0 x e n-$ days $20=o t h e r$ (specify)	Est. Total Value in Birr	
INPUT	VIII1	VIII2	VIII3	VIII4	VIII5	VIII6	VIII7	VIII8	VIII9	VIII10	VIII11	VIII12
800 Fungicide Type/form.												
700 Storage Insecticide												
Other												

AF11 \qquad Did you split the application of urea during the current season?

$$
\begin{aligned}
& 0=\text { no } \\
& 1=\text { yes }
\end{aligned}
$$

If yes, how did you split it?

AF12 \qquad kgs at broadcasting

AF13 \qquad kgs as top dressing
\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad

Table IX. Impact of Purchased Inputs on Maize Yield and Future Input Use

Input	Impact on yield	When did you receive this input?				If you had to pay for this input immediately (instead of receiving credit), would you purchase it? 0 Would not buy 1	Rank each ii order of importal (1=most imp 6=least impc
	1 Improved yield/storage 2 No impact on yield/storage 3 Reduced yield/stored grain 4 Doesn't know	Month 1... 12	Week 1... 4	$$	If late, reason why 1=delay in receiving credit (specify why) $2=$ lack of cash 3=input unavailable in shops 4=other (specify)		
INPUT	IX1	IX2	IX3	IX4	IX5	IX6	IX7
200 Improved seed							
300 DAP							
400 Urea							
500 Herbicide							
800 Fungicide							
600 Field Insecticide							
700 Storage Insecticide							

\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad
Table X. FARMER ASSESSMENT OF FACTORS AFFECTING MAIZE YIELD 1993/94-97/98
Note to enumerator: For each topic, ask the farmer for his assessment of this year (96-97), last year (95-96), two years ago (94-95), three years ago (93-94), four years ago (92-93). Finally, ask what he expects the situation to be next year (97-98).

YEAR	Total amount of rainfall received	Distribution of rainfall	Hail and frost damage	Wild animal damage	Insect infestation	Plant disease problem	Weed infestat
	$\begin{aligned} & 1=\text { excess rain } \\ & 2=\text { good rains } \\ & 3=\text { shortage of rain } \\ & 4=\text { can't recall } \end{aligned}$	$\begin{aligned} & \text { 1=excellent } \\ & \text { 2=good } \\ & \text { 3=poor } \\ & \text { 4=can't recall } \end{aligned}$	1=hail damage 2=frost damage 3=hail and frost damage 4 =no damage 5=can't recall	$\begin{aligned} & \text { 1=light } \\ & \text { 2=medium } \\ & \text { 3=heavy } \\ & \text { 4=can't recall } \end{aligned}$	$\begin{aligned} & \text { 1=light } \\ & \text { 2=medium } \\ & \text { 3=heavy } \\ & \text { 4=can't recall } \end{aligned}$	$\begin{aligned} & \text { 1=light } \\ & \text { 2=medium } \\ & \text { 3=heavy } \\ & \text { 4=can't recall } \end{aligned}$	$\begin{aligned} & \text { 1=light } \\ & 2=\text { medium } \\ & \text { 3=heavy } \\ & \text { 4=can't recall } \end{aligned}$
YEAR	X1	X2	X3	X4	X5	X6	X7
9697 (this season)							
9596							
9495							
9394							
9293							
9798 (expectation for next season)							

\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad

PART IV. SG2000/EXTENSION

AF14
AF15
During this season (96/97), how many times were you visited by the extension agent?
How do you view the services provided by the extension department?
Very useful
Useful
Not very useful
No comment

What are the two most important extension messages you received during this season (96/97)?
AF16
\qquad
AF17 \qquad

If you prefer to leave, why?

CP3

Do you have additional comments about the SG2000 program or the technologies used in the program?
\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad

PART V. MARKETING/CONSUMPTION

AF18		How does the color of improved maize compare to traditional varieties?
	1	Prefers improved maize
	2	Doesn't see any difference
	3	Prefers the traditional varieties
	4	Doesn't know
AF19		How does the taste of improved maize compare to traditional varieties?
	1	Prefers improved maize
	2	No difference
	3	Prefers the traditional varieties
	4	Doesn't know

What is the principal destination for the TRADITIONAL varieties of maize you produce?

1	Market
$\mathbf{2}$ Home consumption	
$\mathbf{3}$	Both

AF21 Market Home consumption 3 Both

AF22

How does the PRICE that traders pay for improved maize compare to the price paid for traditional varieties?

Pay more for improved maize
Pay the same
Pay less for improved maize
Doesn't know
\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad
TABLE XI. MARKETING OF MAIZE

YEAR	TOTAL PRODUCTION OF MAIZE		TOTAL CONSUMPTION BY HOUSEHOLD		QUANTITY MARKETED		MONTH WHEN LARGEST QTY OF MAIZE SOLD	MAIN BUYER	DISTANCE TO MAIN BUYER	METHOD OF TRANSPORT	PRICE RECEIVED			
	Qty.	Unit $\begin{aligned} & 1=50 \mathrm{~kg} \\ & 2=100 \mathrm{~kg} \\ & 3=\mathrm{kg} \\ & 20=\text { other } \\ & \text { (specify) } \end{aligned}$	Qty.	$\begin{aligned} & \text { Unit } \\ & \begin{array}{l} 1=50 \mathrm{~kg} \\ 2=100 \mathrm{~kg} \\ 3=\mathrm{kg} \\ 20=o t h e r \\ \text { (specify) } \end{array} \end{aligned}$	Qty.	Unit $\begin{aligned} & 1=50 \mathrm{~kg} \\ & 2=100 \mathrm{~kg} \\ & 3=\mathrm{kg} \\ & 20=0 \text { other } \\ & \text { (specify) } \end{aligned}$	$\begin{aligned} & \text { Month } \\ & 1 . . .12 \end{aligned}$	1=village trader $2=$ local market 3=trader with truck $20=$ other (specify)	kms	1=human $2=$ animal $3=$ motor vehicle 4=human and animal	Price (Birr)	Unit $\begin{aligned} & 1=50 \mathrm{~kg} \\ & 2=100 \mathrm{~kg} \\ & 3=\mathrm{kg} \\ & \text { 20=other } \\ & \text { (specify) } \end{aligned}$	Opinion about price received $\begin{aligned} & \text { 1=low } \\ & \text { 2=avg. } \\ & \text { 3=high } \end{aligned}$	Sou pri inf $1=r$ $2=r$ 3=1 ma: e $20=$ (sp
YEAR	XI1	XI2	XI3	XI4	XI5	XI6	XI7	XI8	XI9	XI10	XI11	XI12	XI13	XI]
9596														
9495														
9394														
9293														
Plans for 9697														

\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad

WORKSHEET: MAIZE FIELD ACTIVITIES

Activity	\quad Power Source $1=$ Tractor $2=$ Animal $3=$ Human anuman and Animal	When was it carried out?	
		Month $(1,2, \ldots, 12$ or indicate that not done $)$	$\begin{gathered} \text { Week (START DATE)* } \\ (\mathbf{1 , 2 , 3 , 4}) \end{gathered}$
1 Seed treatment			
2 Clearing new land			
3 Removing crop stubble			
4 Bund making			
$10 \quad 1{ }^{\text {st }}$ Plowing			
$11.22^{\text {nd }}$ Plowing			
$123^{\text {rd }}$ 12 Plowing			
$134^{\text {th }}$ Plowing			
$145^{\text {th }}$ Plowing			
16 Plowing for planting/making rows			
$20 \quad$ Planting seeds			
21 Planting seeds and $1^{\text {st }}$ application of fertilizer (DAP and/or Urea) AT THE SAME TIME			
$30 \begin{array}{c}\text { 1st } \\ \text { st } \\ \text { and/or Urea) }\end{array}$			
22 Covering seeds			
23 Trampling/leveling			
40 Application of herbicide			
$41 \quad 11^{\text {st }}$ weeding			
$43 \quad$ Thinning			
44 Cultivation			
$31 \quad 2{ }^{\text {nd }}$ application of fertilizer (Urea)			
$42 \quad 2{ }^{\text {nd }}$ weeding			
$50{ }^{50} 1^{\text {st }}$ application of insecticide			
$512^{\text {nd }}$ application of insecticide			
$60 \quad 1{ }^{\text {st }}$ application of fungicide			
$61 \quad 2^{\text {nd }}$ application of fungicide			

3. CURRENT SG2000 PROGRAM PARTICIPANT / MAIZE

ZON _WOR FA _____HH \qquad QTYPE \qquad ENUM

70 Harvest			
80 Transport to threshing area			
91 Dehusking/shelling			
81 Transport to storage area			
100 Other (specify)			

 WEEK 3-4.

Is the 1996/97 threshing complete?

$0=$ no
$1=$ yes

Table XII. LABOR USED IN THE TRADITIONAL MAIZE PLOT 2

\qquad FA _HH \qquad QTYPE \qquad ENUM___

Table XIII. INPUTS USED IN THE TRADITIONAL MAIZE PLOT 2

3. CURRENT SG2000 PROGRAM PARTICIPANT / MAIZE \qquad WOR \qquad FA _HH \qquad QTYPE \qquad ENUM

Input	How much was used? (For animals/tractor no.days/hrs)		Did you paycash or inkind for thisinput?	How did you get it?	When was it applied? (Copy dates from field worksheet)		How much did it cost?					Did you pay immediately after receiving the input or did you receive credit? 1 immediate payment 2 Credit 3 Both (indicate amt. input received on credit)
	Qt	Unit $1=50 \mathrm{~kg}$ $2=100 \mathrm{~kg}$ $3=\mathrm{kg}$ $4=$ liter $5=$ oxen-days $6=$ tractor hours $7=$ tractor ha $20=$ other (specify)		1 SG2000/ Gov't extension program 2 Trader/Market 3 Rented (animals/tracto r) 4 Own/Saved 20 Other (specify)			$\begin{gathered} \text { Cash } \\ \text { (Birr) } \end{gathered}$	In-Kind Payment				
			0 no (skip to the next input) 1 yes (proceed to next column)		Month $(1,2, . . .1$ $2)$	$\begin{aligned} & \text { Week } \\ & (\mathbf{1 , 2 , 3 , 4)} \end{aligned}$		Type $1=$ tef $2=$ maize $3=$ wheat $4=$ barley $5=$ sorghum $6==$ millet pulses $7=$ $8=o i l s e e d s$ $20=o t h e r$ (specify)	Qty.	$\begin{gathered} \text { Unit } \\ 1=50 \mathrm{~kg} \\ 2=100 \mathrm{~kg} \\ 3=\mathrm{kg} \\ \text { 4=liter } \\ \text { 5=oxen- } \\ \text { days } \\ 20=0 \text { other } \\ \text { (specify) } \end{gathered}$	Est. Total Value in Birr	
INPUT	VIIII	VIII2	VIII3	VIII4	VIII5	VIII6	VIII7	VIII8	VIII9	VIII10	VIII11	VIII12
80 Transport to threshing area												
91 Shelling												
81 Transport to storage area												
Tractor												
10 First Plowing												
11 Second Plowing												
Other Inputs												
300 DAP Fertilizer												
400 Urea Fertilizer												
500 Herbicide Type/form.												
600 Field Insecticide Type/form.												

3. CURRENT SG2000 PROGRAM PARTICIPANT / MAIZE \qquad WOR \qquad _FA _HH \qquad QTYPE \qquad ENUM \qquad

Input	How much was used? (For animals/tractor no.days/hrs)		Did you pay cash or in kind for this input?	How did you get $\mathbf{i t}$?	When was it applied? (Copy dates from field worksheet)		How much did it cost?					Did you pay immediately after receiving the input or did you receive credit? 1 immediate payment 2 Credit 3 Both (indicate amt. input received on credit)
	Qt	Unit $1=50 \mathrm{~kg}$ $2=100 \mathrm{~kg}$ $3=\mathrm{kg}$ $4=$ liter $5=$ oxen-days $6=$ tractor hours $7=$ tractor ha $20=$ other (specify)		1 SG2000/ Gov't extension program 2 Trader/Market 3 Rented (animals/tracto r) 4 Own/Saved 20 Other (specify)			$\begin{aligned} & \text { Cash } \\ & \text { (Birr) } \end{aligned}$	In-Kind Payment				
			0 no (skip to the next input) 1 yes (proceed to next column)		$\begin{aligned} & \text { Month } \\ & (1,2, \ldots 1 \\ & 2) \end{aligned}$	$\begin{aligned} & \text { Week } \\ & (\mathbf{1 , 2 , 3 , 4}) \end{aligned}$		Type 1=tef $2=$ maize $3=$ wheat $4=$ barley $5=$ sorghum $6==$ millet $7=$ pulses $8=0 . i s e e d s$ $20=$ other (specify)	Qty.	$\begin{gathered} \text { Unit } \\ 1=50 \mathrm{~kg} \\ 2=100 \mathrm{~kg} \\ 3=\mathrm{kg} \\ 4=\text { liter } \\ 5=0 \times \mathrm{xen}- \\ \text { days } \\ \text { 20=other } \\ \text { (specify) } \end{gathered}$	Est. Total Value in Birr	
INPUT	VIIII	VIII2	VIII3	VIII4	VIII5	VIII6	VIII7	VIII8	VIII9	VIIII0	VIIII1	VIIII2
800 Fungicide Type/form.												
700 Storage Insecticide												
Other												

CP5 \qquad Did you split the application of urea during the current season?

$$
\begin{aligned}
& \mathbf{0}=\mathbf{n o} \\
& \mathbf{1}=\text { yes }
\end{aligned}
$$

If yes, how did you split it?
\qquad kgs at broadcasting
\qquad kgs as top dressing

MINISTRY OF ECONOMIC DEVELOPMENT AND COOPERATION
 GRAIN MARKETING RESEARCH PROJECT
 with the collaboration of
 Sasakawa-Global 2000

Survey of Input Utilization and Marketing in the Smallholder Sector - PART II October-November 1997

1. To be filled out only by farmers currently participating in the SG2000/government extension program (tef)
\qquad QTYPE

Zone			ZON
Woreda		WOR	
Farmer Association		FA	
Household Number	\square	HH	
Name of Farmer			
Enumerator			

In what years have you participated in the SG2000 program (mark all appropriate)? No=0 Yes=1 96/97 season (this season)?
95/96 season?

94/95 season?
93/94 season?

92/93 season?
In what years have you participated in the government extension program (mark all appropriate)? No=0 Yes=1
96/97 season (this season)?
P9697
95/96 season?
94/95 season?
93/94 season?
P9596

AF1
Household head's level of education
0
Illiterate
1,2,... 12
99
Last year of school completed
Did not attend public school, but knows how to read and write
(includes religious school)
\qquad WOR \qquad FA \qquad HH QTYPE \qquad ENUM

PART I. THE FARM

Table IV. AREA AND INPUT USE ON MAJOR CROPS IN MEHER SEASON

YEA R	CROP \#1															
	CROP	Area - Own Land		Area - Rented, Sharecropped or Borrowed Land		Input \#1			Input \#2			Input \#3			Input \#4	
	(use codes below)	No.	$\begin{aligned} & \text { Unit } \\ & 1=\text { timad } \\ & 2=\text { kert } \\ & \text { 3=ha } \\ & \text { 4=fachasa } \\ & 20=o t h e r \\ & \text { (specify) } \end{aligned}$	No.	Unit 1=timad 2=kert 3=ha 4=fachasa 20=other (specify)	$\begin{aligned} & \text { Type } \\ & * * \\ & \text { (use codes } \\ & \text { below) } \end{aligned}$	Qty.	$$	$\begin{aligned} & \text { Type } \\ & * * \\ & \text { (use codes } \\ & \text { below) } \end{aligned}$	Qty.	$$	$\begin{aligned} & \text { Type } \\ & \text { ** } \\ & \text { (use codes } \\ & \text { below) } \end{aligned}$	Qty.	$$	Type ** (use codes below)	Qty.
YEAR	CROP	IV1	IV2	IV3	IV4	IV5	IV6	IV7	IV8	IV9	IV10	IV11	IV12	IV13	IV14	IV15
9697																
9596																
9495																
9394																
9293																
* Crop Codes: .																
$\begin{aligned} & 1=\text { tef } \\ & 6=\text { millet } \end{aligned}$	maize pulses	$\begin{aligned} & 3=\text { wheat } \\ & 8=\text { oilseeds } \end{aligned}$	$\begin{aligned} & \text { 4=barley } \\ & \text { 20=other (sp } \end{aligned}$	orgh ify)												
$\begin{aligned} & * * \text { Input T } \\ & \text { 100=Seed } \\ & \mathbf{5 0 0}=\text { herbi } \end{aligned}$				$\begin{aligned} & 200=i \\ & 600=f \end{aligned}$	ed seed secticide	$\begin{aligned} & 300=1 \\ & 700= \end{aligned}$		ide800=fun	icide							

\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad

Table IV. AREA AND INPUT USE ON MAJOR CROPS IN MEHER SEASON (CON'T)

YEAR	CROP \#2															
	CROP	Area - Own Land		Area - Rented, Sharecropped or Borrowed Land		Input \#1			Input \#2			Input \#3			Input \#4	
	(use codes below)	No.	$\begin{aligned} & \text { Unit } \\ & \text { 1=timad } \\ & 2=\text { kert } \\ & \text { 3=ha } \\ & \text { 4=fachasa } \\ & \text { 20=other } \\ & \text { (specify) } \end{aligned}$	No.	$\begin{aligned} & \text { Unit } \\ & 1=\text { timad } \\ & 2=\text { kert } \\ & 3=\text { ha } \\ & 4=\text { fachasa } \\ & 20=o t h e r \\ & \text { (specify) } \end{aligned}$	Type (use codes below)	Qty.	$$	$\begin{aligned} & \text { Type } \\ & * * \\ & \text { (use codes } \\ & \text { below) } \end{aligned}$	Qty.	$$	$\begin{aligned} & \text { Type } \\ & \text { ** } \\ & \text { (use codes } \\ & \text { below) } \end{aligned}$	Qty.	$$	Type ** (use codes below)	Qty.
YEAR	CROP	IV1	IV2	IV3	IV4	IV5	IV6	IV7	IV8	IV9	IV10	IV11	IV12	IV13	IV14	IV15
9697																
9596																
9495																
9394																
9293																
* Crop Codes:																
$\begin{aligned} & 1=\text { tef } \\ & 6=\text { millet } \end{aligned}$	naize pulses	$\begin{aligned} & 3=\text { wheat } \\ & 8=\text { oilseeds } \end{aligned}$	$\begin{aligned} & \text { 4=barley } \\ & 20=\text { other (sp } \end{aligned}$	orghu fy)												
** Input T $100=$ Seed 500=herbi	Codes tment			$\begin{aligned} & 200=\mathrm{in} \\ & 600=\mathrm{fi} \end{aligned}$	ed seed ecticide	$\begin{aligned} & 300= \\ & \mathbf{7 0 0}= \end{aligned}$		$\text { ide } 800=\text { fun }$	icide							

\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad

Table IV. AREA AND INPUT USE ON MAJOR CROPS IN MEHER SEASON (CON’T)

YEAR	CROP \#3															
	CROP	Area - Own Land		Area - Rented, Sharecropped or Borrowed Land		Input \#1			Input \#2			Input \#3			Input \#4	
	(use codes below)	No.	Unit 1=timad 2=kert 3=ha 4=fachasa 20=other (specify)	No.	Unit 1=timad 2=kert 3=ha 4=fachasa 20=other (specify)	$\begin{array}{\|l} \text { Type } \\ * * \\ \text { (use codes } \\ \text { below) } \end{array}$	Qty.	$$	$\begin{aligned} & \text { Type } \\ & * * \\ & \text { (use codes } \\ & \text { below) } \end{aligned}$	Qty.	$$	$\begin{aligned} & \text { Type } \\ & * * \\ & \text { (use codes } \\ & \text { below) } \end{aligned}$	Qty.	$$	$\begin{aligned} & \text { Type } \\ & * * \\ & \text { (use codes } \\ & \text { below) } \end{aligned}$	Qty.
YEAR	CROP	IV1	IV2	IV3	IV4	IV5	IV6	IV7	IV8	IV9	IV10	IV11	IV12	IV13	IV14	IV15
9697																
9596																
9495																
9394																
9293																
* Crop Codes:																
$\begin{aligned} & 1=\text { tef } \\ & 6=\text { millet } \end{aligned}$	maize pulses	$\begin{aligned} & 3=\text { wheat } \\ & 8=\text { oilseeds } \end{aligned}$	$\begin{aligned} & \text { 4=barley } 5 \\ & 20=\text { other (spe } \end{aligned}$	orghu y)												
$\begin{aligned} & \text { ** Input Ty } \\ & \text { 100=Seed t } \\ & \mathbf{5 0 0}=\text { herbic } \end{aligned}$	Codes atment			$\begin{aligned} & 200=i \\ & 600=f i \end{aligned}$	ed seed ecticide	$\begin{aligned} & 300=1 \\ & 700= \end{aligned}$	AP orage	cide800=fun	icide							

\qquad HH QTYPE \qquad ENUM

Table IV. AREA AND INPUT USE ON MAJOR CROPS IN MEHER SEASON

YEAR	CROP \#4															
	CROP	Area - Own Land		Area - Rented, Sharecropped or Borrowed Land		Input \#1			Input \#2			Input \#3			Input \#4	
	(use codes below)	No.	$\begin{aligned} & \text { Unit } \\ & 1=\text { timad } \\ & 2=\text { kert } \\ & \text { 3=ha } \\ & \text { 4=fachasa } \\ & 20=\text { other } \\ & \text { (specify) } \end{aligned}$	No.	Unit 1=timad 2=kert 3=ha 4=fachasa 20=other (specify)	Type ** (use codes below)	Qty.	$$	$\begin{aligned} & \text { Type } \\ & * * \\ & \text { (use codes } \\ & \text { below) } \end{aligned}$	Qty.	$$	$\begin{aligned} & \text { Type } \\ & \text { ** } \\ & \text { (use codes } \\ & \text { below) } \end{aligned}$	Qty.	$$	$\begin{aligned} & \text { Type } \\ & * * \\ & \text { (use codes } \\ & \text { below) } \end{aligned}$	Qty.
YEAR	CROP	IV1	IV2	IV3	IV4	IV5	IV6	IV7	IV8	IV9	IV10	IV11	IV12	IV13	IV14	IV15
9697																
9596																
9495																
9394																
9293																
* Crop Codes:																
$\begin{aligned} & 1=\text { tef } \\ & 6=\text { millet } \end{aligned}$	maize pulses	$\begin{aligned} & 3=\text { wheat } \\ & 8=\text { oilseeds } \end{aligned}$	$\begin{aligned} & \text { 4=barley } 5 \\ & 20=\text { other (sp } \end{aligned}$	orghu fy)												
$\begin{aligned} & * * \text { Input Ty } \\ & \text { 100=Seed } \mathrm{t} \\ & \text { 500=herbic } \end{aligned}$	Codes atment e			$\begin{aligned} & 200=i \\ & 600=f i \end{aligned}$	ed seed ecticide	$\begin{aligned} & \mathbf{3 0 0}= \\ & \mathbf{7 0 0}= \end{aligned}$	$\begin{aligned} & \text { AP } 40 \\ & \text { orage } \end{aligned}$	cide800=fun	icide							

\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad

Table IV. AREA AND INPUT USE ON MAJOR CROPS IN MEHER SEASON (CON'T)

YEAR	CROP \#5															
	CROP	Area - Own Land		Area - Rented, Sharecropped or Borrowed Land		Input \#1			Input \#2			Input \#3			Input \#4	
	(use codes below)	No.	$\begin{aligned} & \text { Unit } \\ & \text { 1=timad } \\ & 2=\text { kert } \\ & \text { 3=ha } \\ & \text { 4=fachasa } \\ & \text { 20=other } \\ & \text { (specify) } \end{aligned}$	No.	Unit 1=timad 2=kert 3=ha 4=fachasa 20=other (specify)	$\begin{array}{\|l} \text { Type } \\ * * \\ \text { (use codes } \\ \text { below) } \end{array}$	Qty.	$,$	$\begin{aligned} & \text { Type } \\ & \text { ** } \\ & \text { (use codes } \\ & \text { below) } \end{aligned}$	Qty.	$$	$\begin{aligned} & \text { Type } \\ & * * \\ & \text { (use codes } \\ & \text { below) } \end{aligned}$	Qty.	$$	$\begin{aligned} & \text { Type } \\ & \text { ** } \\ & \text { (use codes } \\ & \text { below) } \end{aligned}$	Qty.
YEAR	CROP	IV1	IV2	IV3	IV4	IV5	IV6	IV7	IV8	IV9	IV10	IV11	IV12	IV13	IV14	IV15
9697																
9596																
9495																
9394																
9293																
* Crop Codes:																
$\begin{aligned} & 1=\text { tef } \\ & 6=\text { millet } \end{aligned}$	maize pulses	$\begin{aligned} & 3=\text { wheat } \\ & 8=\text { oilseeds } \end{aligned}$	$\begin{aligned} & \text { 4=barley } \\ & 20=\text { other }(\mathrm{sp} \end{aligned}$	sorgh ify)												
** Input Ty $100=$ Seed 500=herbic	Codes atment			$\begin{aligned} & 200=i \\ & 600=f \end{aligned}$	ed seed ecticide	$\begin{aligned} & 300=1 \\ & 700=s \end{aligned}$	$\text { AP } 4$	$\text { cide } 800=\text { fun }$	icide							

\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad

Table IV. AREA AND INPUT USE ON MAJOR CROPS IN MEHER SEASON (CON’T)

YEAR	FALLOW/GRAZING AREA				
	CROP/ LAND USE type	Area - Own Land		Area - Rented, Sharecropped or Borrowed Land	
	* (use codes below)	No.	$\begin{aligned} & \text { Unit } \\ & 1=\text { timad } \\ & 2=\text { kert } \\ & 3=\text { ha } \\ & \text { 4=fachasa } \\ & 20=o t h e r \\ & \text { (specify) } \end{aligned}$	No.	$\begin{aligned} & \text { Unit } \\ & \text { 1=timad } \\ & 2=\text { kert } \\ & 3=\text { ha } \\ & 4=\text { fachasa } \\ & 20=\text { other } \end{aligned}$
YEAR	CROP	IV1	IV2	IV3	IV4
9697	11				
9596	11				
9495	11				
9394	11				
9293	11				
* Crop Codes:					
$\begin{aligned} & 1=\text { tef } \\ & 6=\text { millet } \end{aligned}$	maize	$\begin{aligned} & 3=\text { wheat } \\ & 8=\text { oilseeds } \end{aligned}$	$\begin{aligned} & \text { 4=barley } \\ & \text { 11=fallow } \end{aligned}$	$\begin{aligned} & 5=\text { sorgh } \\ & 20=\text { othe } \end{aligned}$	
$100=$ Seed treatment 500=herbicide				200=improved seed $600=$ field insecticide	

[^3]\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad

AF2
Has the total area (owned, rented, sharecropped or borrowed) planted to tef changed between 1992-93 and the current season?

$$
\begin{aligned}
& 0=\text { no change } \\
& 1=\text { area planted to tef has increased slightly } \\
& 2 \text { = area planted to tef has increased significantly } \\
& 3=\text { area planted to tef has decreased slightly } \\
& 4=\text { area planted to tef has decreased significantly }
\end{aligned}
$$

If there was a change in tef area between 1992-93, give the three most important reasons for the area increase/decrease in order of importance:

AF3 \qquad

AF4 \qquad

AF5 \qquad

AF6 \qquad Do you plan to increase, decrease or maintain the same area planted to tef during the 1997-98 season (next season?)
$0=$ no change
$1=$ will slightly increase area planted to tef
$2=$ will increase area planted to tef significantly
$3=$ will slightly decrease area planted to tef
$4=$ will decrease area planted to tef significantly
If you plan to increase or decrease the area planted to tef next season, give the three most important reasons why:

AF7

\qquad

AF8 \qquad
AF9
\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad

Table V. LIVESTOCK HOLDINGS

YEAR	LIVESTOCK 1		LIVESTOCK 2		LIVESTOCK 3		LIVESTOCK 4		LIVESTOCK 5		LIVESTOCK 6		LIVESTOCK 7	
	Type * (use codes below)	No.	Type (use codes below)	No.	Type (use codes below)	No.	Type * (use codes below)	No.	Type * (use codes below)	No.	Type * (use codes below)	No.	Type * (use codes below)	No
YEAR	LIVE	No	LIVE	NC										
9697														
9596														
9495														
9394														
9293														

* Livestock type codes

[^4]2= steers 3= cows/heifers
6= donkeys

PART II. THE HOUSEHOLD
Table VI. DEMOGRAPHIC DATA ABOUT THE HOUSEHOLD*

\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad

NOTES FOR ENUMERATORS

* The HOUSEHOLD is defined as persons living in the same compound who regularly eat together.
** AGE variable

1. Enumerators should first ask household helds for the exact age of household members in years.
2. The age of children less than 1 year of age (e.g., 3 months) should be recorded as "1."
3. If household heads cannot recall the exact age of household members, prompt for the birth year using the following list of significant historical events:
4. If household heads still cannot recall the birth year, as a last resort categorize the age of family members as follows:

$$
\begin{aligned}
& 101=<7 \text { years of age } \\
& 102=(>=7,<=8) \\
& 103=(>=9,<=12) \\
& 104=(>=13,<=15) \\
& 105=(>=16,<=54) \\
& 106=(>=55)
\end{aligned}
$$

\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad

WORKSHEET: TEF FIELD ACTIVITIES

Activity	Power Source$\begin{aligned} & \text { 1=Tractor } \\ & \text { 2=Animal } \\ & \text { 3=Human } \\ & \text { 4=Human and } \\ & \text { Animal } \end{aligned}$	When was it carried out?	
		Month $(1,2, \ldots, 12$ or indicate that not done)	$\begin{gathered} \text { Week (START DATE)* } \\ (\mathbf{1 , 2 , 3 , 4}) \end{gathered}$
2 Clearing New Land			
3 Removing Crop Stubble			
$10 \quad 11^{\text {st }}$ Plowing			
$11{ }^{11} \quad 22^{\text {nd }}$ Plowing			
12 3 $3^{\text {rd }}$ Plowing			
13 4 $4^{\text {th }}$ Plowing			
$145^{\text {th }}$ Plowing			
$15 \quad 6{ }^{\text {th }}$ Plowing			
20 Broadcasting seeds			
21 Broadcasting seeds and $1^{\text {st }}$ application of fertilizer (DAP and/or Urea) AT THE SAME TIME			
$30 \quad 1^{\text {st }}$ application of fertilizer (DAP and/or Urea)			
23 Trampling/leveling			
40 Application of herbicide			
$41 \quad 11^{\text {st }}$ weeding			
$312^{\text {nd }}$ application of fertilizer (Urea)			
$42 \quad 2^{\text {nd }}$ weeding			
$50 \quad 1{ }^{\text {st }}$ application of insecticide			
51 $\quad 22^{\text {nd }}$ application of insecticide			
70 Harvest			
$80 \quad$ Transport to threshing area			
90 Threshing and winnowing			
81 Transport to storage area			
100 Other (specify)			

* Enumerators should try to get the farmer to recall the specific WEEK in which the activity was carried out. If the farmer cannot remember the week, prompt for a 2-week period and record this as e.g., WEEK 1-2, WEEK 3-4.

AF10
Is the 1996/97 threshing complete?
$0=$ no $1=y e s$
Table VII. LABOR USED IN THE SG2000/GOV'T EXTENSION PROGRAM TEF PLOT \qquad
\qquad _WOR \qquad _FA \qquad HH \qquad QTYPE \qquad ENUM

\qquad
\qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad

Table VIII. INPUTS USED IN THE SG2000/GOV'T EXTENSION PROGRAM TEF PLOT 1

Input	How much was used? (For animals/tractor no.days/hrs)		Did you pay cash or in kind for this input?	How did you get it? 1 SG2000/	When was it applied? (Copy dates from field worksheet)		How much did it cost?					 Did you pay immediately after receiving the input or did you receive credit? 1 immediate payment 2 Credit 3 Both (indicate amt. input received on credit)
	Qt	Unit $1=50 \mathrm{~kg}$ $2=100 \mathrm{~kg}$ $3=\mathrm{kg}$ $4=$ liter $5=0 \times 2$-days $6=$ tractor hours $7=$ tractor ha $20=$ other (specify)					Cash (Birr)	In-Kind Payment				
			0 no (skip to the next input) 1 yes (proceed to next column)	1 SG2000/ Gov't extension program 2 Trader/Market 3 Rented (animals/tracto r) 4 Own/Saved 20 Other (specify)	Month (1,2,... 1 2)	Week $(1,2,3,4)$		Type 1=tef 2=maize 3=wheat 4=barley 5=sorghum 6==millet pulses $7=$ 8=oilseeds 20=other (specify)	Qty.	\quad Unit $1=50 \mathrm{~kg}$ $2=100 \mathrm{~kg}$ $3=\mathrm{kg}$ $4=$ liter $5=$ oxen- days $20=$ other (specify)	Est. Total Value in Birr	
INPUT	VIII1	VIII2	VIII3	VIII4	VIII5	VIII6	VIII7	VIII8	VIII9	VIII10	VIII11	VIII12
100 Seed Treatment Type \qquad Type \qquad												
200 Seed Variety (ies)												
Animal Traction												
10 First Plowing												
11 Second Plowing												
12 Third Plowing												
13 Fourth Plowing												
14 Fifth Plowing												
15 Sixth Plowing												
23 Trampling/leveling												
80 Transport to threshing area												

\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad

Input	How much was used? (For animals/tractor no.days/hrs)		Did you pay cash or in kind for this input?	How did you get it?	When was it applied? (Copy dates from field worksheet)		How much did it cost?					Did you pay immediately after receiving the input or did you receive credit? 1 immediate payment 2 Credit 3 Both (indicate amt. input received on credit)
	Qt	Unit $1=50 \mathrm{~kg}$ $2=100 \mathrm{~kg}$ $3=\mathrm{kg}$ $4=$ liter $5=0 \times e n-$ days $6=$ tractor hours $7=$ tractor ha $20=$ other (specify)		 1 SG2000/ Gov't extension program 2 Trader/Market 3 Rented (animals/tracto r) 4 Own/Saved 20 Other (specify)			Cash (Birr)	In-Kind Payment				
			0 no (skip to the next input) 1 yes (proceed to next column)		Month (1,2,...1 2)	$\begin{aligned} & \text { Week } \\ & (1,2,3,4) \end{aligned}$		Type 1=tef 2=maize $3=$ wheat 4=barley $5=$ sorghum $6==$ millet $\quad 7=$ pulses $8=0$ oilseeds 20=other (specify)	Qty.	$$	Est. Total Value in Birr	
INPUT	VIII1	VIII2	VIII3	VIII4	VIII5	VIII6	VIII7	VIII8	VIII9	VIII10	VIII11	VIII12
81 Transport to storage area												

\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad

Input	How much was used? (For animals/tractor no.days/hrs)		Did you pay cash or in kind for this input?	How did you get it?	When was it applied? (Copy dates from field worksheet)		How much did it cost?					Did you pay immediately after receiving the input or did you receive credit? 1 immediate payment 2 Credit 3 Both (indicate amt. input received on credit)
	Qt	$$					Cash (Birr)	In-Kind Payment				
			0 no (skip to the next input) 1 yes (proceed to next column)	1 SG2000/ Gov't extension program 2 Trader/Market 3 Rented (animals/tracto r) 4 Own/Saved 20 Other (specify)	Month $(1,2, \ldots 1$ 2)	$\begin{aligned} & \text { Week } \\ & (1,2,3,4) \end{aligned}$		Type 1=tef 2=maize $3=$ wheat 4=barley 5=sorghum $6==$ millet $\quad 7=$ pulses $8=0$ oilseeds 20=other (specify)	Qty.	$$	Est. Total Value in Birr	
INPUT	VIII1	VIII2	VIII3	VIII4	VIII5	VIII6	VIII7	VIII8	VIII9	VIII10	VIII11	VIII12
Tractor												
10 First Plowing												
11 Second Plowing												
Other Inputs												
300 DAP Fertilizer												
400 Urea Fertilizer												
500 Herbicide Type/form.												
600 Field Insecticide Type/form.												
Other												

\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM

AF11 \qquad Did you split the application of urea during the current season?

$$
0=\text { no }
$$

$$
1=\text { yes }
$$

If yes, how did you split it?
AF13 _ kgs as top dressing
\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad

Table IX. Impact of Purchased Inputs on Tef Yield and Future Input Use

\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad

Table X. FARMER ASSESSMENT OF FACTORS AFFECTING TEF YIELD 1993/94-97/98

Note to enumerator: For each topic, ask the farmer for his assessment of this year (96-97), last year (95-96), two years ago (94-95), three years ago (93-94), four years ago (92-93). Finally, ask what he expects the situation to be next year (97-98).

YEAR	Total amount of rainfall received	Distribution of rainfall	Hail and frost damage	Wild animal damage	Insect infestation	Plant disease problem	Weed infestatio
	1=excess rain 2=good rains $3=$ shortage of rain 4=can't recall	$\begin{aligned} & \text { 1=excellent } \\ & \text { 2=good } \\ & \text { 3=poor } \\ & \text { 4=can't recall } \end{aligned}$	$\begin{array}{\|l} \hline \text { 1=hail damage } \\ \text { 2=frost damage } \\ \text { 3=hail and frost damage } \\ \text { 4=no damage } \\ \text { 5=can't recall } \\ \hline \end{array}$	$\begin{aligned} & \text { 1=light } \\ & \text { 2=medium } \\ & \text { 3=heavy } \\ & \text { 4=can't recall } \end{aligned}$	$\begin{aligned} & \text { 1=light } \\ & \text { 2=medium } \\ & \text { 3=heavy } \\ & \text { 4=can't recall } \end{aligned}$	$\begin{aligned} & \text { 1=light } \\ & \text { 2=medium } \\ & \text { 3=heavy } \\ & \text { 4=can't recall } \end{aligned}$	$\begin{aligned} & \text { 1=light } \\ & \text { 2=medium } \\ & \text { 3=heavy } \\ & \text { 4=can't recall } \end{aligned}$
YEAR	X1	X2	X3	X4	X5	X6	X7
9697 (this season)							
9596							
9495							
9394							
9293							
9798 (expectation for next season)							

\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad

PART IV. EXTENSION

AF14
AF15 1

2
3
4

During this season (96/97), how many times were you visited by the extension agent?

How do you view the services provided by the extension department?
Very useful
Useful
Not very useful
No comment

What are the two most important extension messages you received during this season (96/97)?
AF16 \qquad
\qquad

AF17 \qquad
\qquad

If the SG2000/government extension program continues next year, would you like to participate or do you prefer to leave the program?

1
Would like to participate

Prefers to leave

If you prefer to leave, why?
CP2
2

Do you have additional comments about the SG2000/government extension program or the technologies used in the program?

PART V. MARKETING/CONSUMPTION

| AF18 | How does the color of improved tef compare to traditional varieties? |
| :--- | :--- | :--- |
| | |
| | |
| 2 | Prefers improved tef |
| 3 | Doesn't see any difference |
| 4 | Prefers the traditional varieties |
| | Doesn't know |

\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad

AF19

AF20

1 2

Home consumption

Market
Home consumption
Both
Both

How does the taste of improved tef compare to traditional varieties?
Prefers improved tef
No difference
Prefers the traditional varieties
Doesn't know
What is the principal destination for the TRADITIONAL varieties of tef you produce?

What is the principal destination for the improved varieties of tef you produce?

How does the PRICE that traders pay for improved tef compare to the price paid for traditional varieties?

Pay more for improved tef Pay the same
Pay less for improved tef Doesn't know
\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad

TABLE XI. MARKETING OF TEF

YEAR	TOTAL PRODUCTION OF TEF		TOTAL CONSUMPTION BY HOUSEHOLD		QUANTITY MARKETED		MONTH WHEN LARGEST QTY OF TEF SOLD	MAIN BUYER	DISTANCE TO MAIN BUYER	METHOD OF TRANSPORT	PRICE RECEIVED			
	Qty.	$\begin{aligned} & \text { Unit } \\ & \begin{array}{l} 1=50 \mathrm{~kg} \\ 2=100 \mathrm{~kg} \\ 3=\mathrm{kg} \\ 20=o t h e r \\ \text { (specify) } \end{array} \end{aligned}$	Qty.	$\begin{aligned} & \text { Unit } \\ & \begin{array}{l} 1=50 \mathrm{~kg} \\ 2=100 \mathrm{~kg} \\ 3=\mathrm{kg} \\ 20=0 \text { other } \\ \text { (specify) } \end{array} \end{aligned}$	Qty.	Unit $\begin{aligned} & 1=50 \mathrm{~kg} \\ & 2=100 \mathrm{~kg} \\ & 3=\mathrm{kg} \\ & \text { 20=other } \\ & \text { (specify) } \end{aligned}$	Month $\text { 1... } 12$	1=village trader $2=$ local market 3=trader with truck $20=$ other (specify)	kms	1=human $2=$ animal 3=motor vehicle 4=human and animal	Price (Birr)	Unit $1=50 \mathrm{~kg}$ $2=100 \mathrm{~kg}$ $3=\mathrm{kg}$ 20=other (specify)	Opinion about price received $\begin{aligned} & \text { 1=low } \\ & \text { 2=avg. } \\ & \text { 3=high } \end{aligned}$	Sou pri inf 1=r $2=r$ 3=1 ma e $20=$ (sp
YEAR	XI1	XI2	XI3	XI4	XI5	XI6	XI7	XI8	XI9	XI10	XI11	XI12	XI13	XI]
9596														
9495														
9394														
9293														
Plans for 9697														

\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad

WORKSHEET: TEF FIELD ACTIVITIES

Activity	Power Source$\begin{aligned} & \text { 1=Tractor } \\ & \text { 2=Animal } \\ & 3=\text { Human } \\ & \text { 4=Human and } \\ & \text { Animal } \end{aligned}$	When was it carried out?	
		Month $(1,2, \ldots, 12$ or indicate that not done $)$	$\begin{aligned} & \text { Week (START DATE)* } \\ & (1,2,3,4) \end{aligned}$
2 Clearing New Land			
3 Removing Crop Stubble			
$10 \quad 1{ }^{\text {st }}$ Plowing			
$11 \quad 22^{\text {nd }}$ Plowing			
12 3 $3^{\text {rd }}$ Plowing			
13 4 $4^{\text {th }}$ Plowing			
$145^{\text {5 }}$ th Plowing			
$15 \quad 6{ }^{\text {th }}$ Plowing			
20 Broadcasting seeds			
21 Broadcasting seeds and $1^{\text {st }}$ application of fertilizer (DAP and/or Urea) AT THE SAME TIME			
$\begin{array}{\|\|l} 30 \quad 1^{\text {st }} \text { application of fertilizer (DAP } \\ \text { and/or Urea) } \end{array}$			
23 Trampling/leveling			
40 Application of herbicide			
$411^{\text {4t }}$ weeding			
31 $2^{\text {nd }}$ application of fertilizer (Urea)			
42 $\mathbf{2}^{\text {nd }}$ weeding			
$50 \quad 11^{\text {st }}$ application of insecticide			
$51 \quad 22^{\text {nd }}$ application of insecticide			
70 Harvest			
80 Transport to threshing area			
90 Threshing and winnowing			
81 Transport to storage area			
100 Other (specify)			

* Enumerators should try to get the farmer to recall the specific WEEK in which the activity was carried out. If the farmer cannot remember the week, prompt for a 2 -week period and record this as e.g., WEEK 1-2, WEEK 3-4.

[^5]\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM

Table XII. LABOR USED IN THE TRADITIONAL TEF PLOT 2

\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad

Table XIII. INPUTS USED IN THE TRADITIONAL TEF PLOT $\mathbf{2}$

Input	How much was used? (For animals/tractor no.days/hrs)		Did you pay cash or in kind for this input?	How did you get it? SG2000/	When was it applied? (Copy dates from field worksheet)		How much did it cost?					 Did you pay immediately after receiving the input or did you receive credit? 1 immediate payment 2 Credit 3 Both (indicate amt. input received on credit)
	Qt	Unit $1=50 \mathrm{~kg}$ $2=100 \mathrm{~kg}$ $3=\mathrm{kg}$ $4=$ liter $5=$ 6=oxen-days $6=$ tractor hours $7=$ tractor ha 20= other (specify)					Cash (Birr)	In-Kind Payment				
			0 no (skip to the next input) 1 yes (proceed to next column)	1 SG2000/ Gov't extension program 2 Trader/Market 3 Rented (animals/tracto r) 4 Own/Saved 20 Other (specify)	Month (1,2,... 1 2)	Week $(1,2,3,4)$		Type 1=tef 2=maize 3=wheat 4=barley 5=sorghum 6==millet pulses $7=$ 8=oilseeds 20=other (specify)	Qty.	\quad Unit $1=50 \mathrm{~kg}$ $2=100 \mathrm{~kg}$ $3=\mathrm{kg}$ $4=$ liter $5=$ oxen- days $20=$ other (specify)	Est. Total Value in Birr	
INPUT	VIII1	VIII2	VIII3	VIII4	VIII5	VIII6	VIII7	VIII8	VIII9	VIII10	VIII11	VIII12
100 Seed Treatment Type \qquad Type \qquad												
200 Seed Variety (ies)												
Animal Traction												
10 First Plowing												
11 Second Plowing												
12 Third Plowing												
13 Fourth Plowing												
14 Fifth Plowing												
15 Sixth Plowing												
23 Trampling/leveling												
80 Transport to threshing area												

\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad

Input	How much was used? (For animals/tractor no.days/hrs)		Did you pay cash or in kind for this input?	How did you get it?	When was it applied? (Copy dates from field worksheet)		How much did it cost?					Did you pay immediately after receiving the input or did you receive credit? 1 immediate payment 2 Credit 3 Both (indicate amt. input received on credit)
	Qt	Unit $1=50 \mathrm{~kg}$ $2=100 \mathrm{~kg}$ $3=\mathrm{kg}$ $4=$ liter $5=0 \times e n-$ days $6=$ tractor hours $7=$ tractor ha $20=$ other (specify)		 1 SG2000/ Gov't extension program 2 Trader/Market 3 Rented (animals/tracto r) 4 Own/Saved 20 Other (specify)			Cash (Birr)	In-Kind Payment				
			0 no (skip to the next input) 1 yes (proceed to next column)		Month (1,2,...1 2)	$\begin{aligned} & \text { Week } \\ & (1,2,3,4) \end{aligned}$		Type 1=tef 2=maize $3=$ wheat 4=barley $5=$ sorghum $6==$ millet $\quad 7=$ pulses $8=0$ oilseeds 20=other (specify)	Qty.	$$	Est. Total Value in Birr	
INPUT	VIII1	VIII2	VIII3	VIII4	VIII5	VIII6	VIII7	VIII8	VIII9	VIII10	VIII11	VIII12
81 Transport to storage area												

\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad ENUM \qquad

Input	How much was used? (For animals/tractor no.days/hrs)		Did you pay cash or in kind for this input?	How did you get it?	When was it applied? (Copy dates from field worksheet)		How much did it cost?					Did you pay immediately after receiving the input or did you receive credit? 1 immediate payment 2 Credit 3 Both (indicate amt. input received on credit)
	Qt	$$					Cash (Birr)	In-Kind Payment				
			0 no (skip to the next input) 1 yes (proceed to next column)	1 SG2000/ Gov't extension program 2 Trader/Market 3 Rented (animals/tracto r) 4 Own/Saved 20 Other (specify)	Month $(1,2, \ldots 1$ 2)	$\begin{aligned} & \text { Week } \\ & (1,2,3,4) \end{aligned}$		Type 1=tef 2=maize $3=$ wheat 4=barley 5=sorghum $6==$ millet $\quad 7=$ pulses $8=0$ oilseeds 20=other (specify)	Qty.	$$	Est. Total Value in Birr	
INPUT	VIII1	VIII2	VIII3	VIII4	VIII5	VIII6	VIII7	VIII8	VIII9	VIII10	VIII11	VIII12
Tractor												
10 First Plowing												
11 Second Plowing												
Other Inputs												
300 DAP Fertilizer												
400 Urea Fertilizer												
500 Herbicide Type/form.												
600 Field Insecticide Type/form.												
Other												

\qquad WOR \qquad FA \qquad HH \qquad QTYPE \qquad

CP5 \qquad Did you split the application of urea during the current season?

$$
\mathbf{0}=\mathbf{n o}
$$

$$
1=\text { yes }
$$

If yes, how did you split it?
CP6 _ kgs at broadcasting
CP7 _ kgs as top dressing

APPENDIX 3: FINANCIAL BUDGETS

Table 27. Summary of Farm Level Enterprise Budgets for Maize (West Shoa), by Program Type

Budget Item	MOA/SG	Graduate
n used in calculations ${ }^{\text {a }}$	92	57
1. GRAIN YIELD ${ }^{\text {b }}$ (kg/ha)	5554	4803
1.A. January 1998 adjusted yield	5337	4616
1.B. April-May 1998 adjusted yield	4979	4305
1.C. August 1998 adjusted yield	4643	4016
1.D. Aug. 1998, if storage losses decline by $\mathbf{5 0 \%}$	5081	4394
2. EST. FARMGATE PRICE ${ }^{\text {c (birr/kg) }}$		
2.A. January 1998	0.69	0.69
2.B. April-May 1998	0.72	0.72
2.F. August 1998	0.89	0.89
3. GROSS REVENUE ${ }^{\text {d }}$ (birr/ha)		
3.A. Jan. Sale	2781.0	2702.4
3.B. Apr.-May Sale ${ }^{\text {e }}$	2577.7	2521.0
3.C. Aug. Sale ${ }^{\text {f }}$	3010.9	2890.1
3.D. Aug. Sale, if storage losses decline by $\mathbf{5 0 \%}$	3322.0	3159.2
4. PACKAGE COSTS ${ }^{\text {g }}$ (birr/ha)	657	295
4.A. Seed	136	93
4.B. DAP	260	109
4.C. Urea	260	92
4.D. Herbicide	1	1
4.E. Insecticide	0	0
4.F. Fungicide	0	0
5. INTEREST		
5.A. January 1998 ${ }^{\text {h }}$	0	15.9
5.B. Apr.-May 1998 ${ }^{\text {i }}$	0	21.4
5.C. August 1998 ${ }^{\text {j }}$	0	27.0
6. LABOR		
6.A. Total family/mutual labor days(adult equiv. days/ha) ${ }^{k}$	158	206
6.B. Total wage labor (birr/ha) ${ }^{1}$	123	77
7. ANIMAL TRACTION COST $^{\mathrm{m}}$ (birr/ha)	93	74
8. HAND TOOLS AND SACKS (birr/ha)	28.7	20.5
8.A. Hand tools ${ }^{\text {n }}$	1.6	1.5
8.B. Sacks ${ }^{0}$	27.1	19.0
9. NET INCOME/HA		
9.A. Jan. Sale ${ }^{\text {p }}$	2781.0	2702.4
9.B. Apr.-May Sales ${ }^{\text {q }}$	2577.7	2521.0
9.C. Aug. Sale ${ }^{\text {r }}$	3010.9	2890.1
9.D. Aug. Sale, if storage losses decline by $\mathbf{5 0 \%}$	3322.0	3159.2
9.E. Jan. Sale, 25\% Output Price Decline	1860.3	1906.2
9.F. Jan. Sale, 50\% Output Price Decline	939.6	1110.0
10. NET INCOME/FAMILY AND MUTUAL LABOR DAY		
10.A. Jan. Sale ${ }^{\text {s }}$	17.6	13.1
10.B. Apr.-May Sale ${ }^{\text {t }}$	16.3	12.2
10.C. Aug. Sale ${ }^{\text {u }}$	19.1	14.0
10.D. Aug. Sale, if storage losses decline by $\mathbf{5 0 \%}$	21.0	15.3
10.E. Jan. Sale, 25\% Output Price Decline	11.8	9.3
10.F. Jan. Sale, 50\% Output Price Decline	5.9	5.4

${ }^{\text {a }}$ No traditional plots from West Shoa were included in the survey.
${ }^{\text {b }}$ Source: crop cut estimates, GMRP/MSU/AAU/MOA/SG2000 Survey. Assumes no grain or straw lost during shelling. Assumes maize was harvested in November and storage losses are $\mathbf{1 . 9 8 \%}$ per month, the average of estimates from Abraham et al. 1993. 1.D. scenario assumes that storage insecticide is used and grain losses are halved.
${ }^{\text {c }}$ Source: EGTE price monitoring unit and GMRP/MSU/AAU/MOA/SG2000 Survey. Local market prices collected by EGTE are adjusted to farmgate prices using survey data on prices reported by farmers. Prices are average prices for white maize during January 1998, average April-May 1998, and August 1998.
${ }^{\mathrm{d}}$ Grain yield* grain price.
${ }^{\text {e }}$ Adjusted as follows: if the farmer sold maizein January rather than April-May, it is assumed that earnings from the January sale would have been reinvested and earned the same rate of interest as the government program loan ($10 \% /$ year). The adjusted gross revenue is calculated by deducting the compounded earnings druing the February-April/May period from the gross revenue.
${ }^{\text {f }}$ Adjusted as follows: if the farmer sold maize in January rather than August, it is assumed that earnings from the January sale would have been reinvested and earned the same rate of interest as the government program loan ($10 \% /$ year $)$. The adjusted gross revenue is calculated by deducting the compounded earnings druing the February-August period from the gross revenue.
${ }^{\mathrm{g}}$ 4.A.+4.B.+4.C.+4.D.+4.E.+4.F. MOA/SG2000 maize package consists of (quantities/ha) 25 kg seed, 100 kg DAP, 100 kg urea. Mean cost reported by farmers.
${ }^{\text {h }}$ Source: GMRP/MSU/AAU/MOA/SG2000 Survey and rate information from MOA/SG2000. MOA program participants pay $\mathbf{1 0 \%}$ interest annually. Assumes that period of loan is $\mathbf{1 0}$ months.
${ }^{i}$ Period of loan assumed to be 13.5 months.
iPeriod of loan assumed to be 17 months.
${ }^{\text {k }}$ Source: GMRP/MSU/AAU/MOA/SG2000 Survey. Includes shelling labor
${ }^{\prime}$ Valued at cash/in-kind payment rates provided by survey participants.
${ }^{\text {m}}$ Sum of (a) rental costs reported by survey respondents and (b) for owned/borrowed oxen, maintenance + depreciated value of animals and animal traction equipment multiplied by percentage of total farm represented by the sample plot.
${ }^{\text {n }}$ Depreciated value of $\mathbf{2}$ sickles, 2 hoes, and 2 spades. Purchase price, life and salvage value of equipment based on field reports by survey supervisors.
${ }^{\circ}$ Depreciated value of sacks needed to transport maize marketed in 1997--98 season. Number of sacks is adjusted for grain losses in storage. Since sacks are retained by famers and used for other purposes, cost is apportioned by multiplying depreciated sack value by percentage of total farm represented by sample plot. Purchase price, life, and value based on field reports by survey supervisors.
${ }^{\mathrm{P}} 3 \mathrm{~A}-(4+5 . \mathrm{A} .+6 . \mathrm{B} .+7+8 \mathrm{~A}+8 \mathrm{~B})$
${ }^{9} 3 B-(4+5 . B .+6 . B .+7+8 A+8 C)$
${ }^{\mathrm{r}} 3 \mathrm{C}-(4+5 . \mathrm{C} .+6 . \mathrm{B} .+7+8 \mathrm{~A}+8 \mathrm{D})$
${ }^{\text {s } 9 \mathrm{~A} / 6 A}$
t9B/6A
"9C/6A

Table 28. Summary of Farm Level Enterprise Budgets for Maize (Jimma), by Program Type

Budget Item	MOA/SG	Traditional	Graduate
n used in calculations	69	47	39
1. GRAIN YIELD ${ }^{\text {a }}$ (kg/ha)	5508	2814	6781
1.A. January 1998 adjusted yield	5293	2704	6516
1.B. April-May 1998 adjusted yield	4937	2522	6078
1.C. August 1998 adjusted yield	4605	2353	5669
1.D. Aug. 1998, if storage losses decline by $\mathbf{5 0 \%}$	5039	2574	6203
2. EST. FARMGATE PRICE ${ }^{\text {b }}$ (birr/kg)			
2.A. January 1998	0.54	0.54	0.54
2.B. April-May 1998	0.65	0.65	0.65
2.F. August 1998	0.93	0.93	0.93
3. GROSS REVENUE (birr/ha)			
3.A. Jan. Sale	2042.1	1029.1	2543.2
3.B. Apr.-May Sale ${ }^{\text {d }}$	2300.8	1160.3	2848.3
3.C. Aug. Sale ${ }^{\text {e }}$	3257.4	1648.0	4012.6
3.D. Aug. Sale, if storage losses decline by $\mathbf{5 0 \%}$	3577.2	1811.0	4405.7
4. PACKAGE COSTS ${ }^{\text {f }}$ (birr/ha)	642	280	606
4.A. Seed	129	40	122
4.B. DAP	263	239	249
4.C. Urea	248	0	235
4.D. Herbicide	0.4	0	0
4.E. Insecticide	0	0	0.4
4.F. Fungicide	1.6	. 8	0
5. INTEREST			
5.A. January $1998^{\text {g }}$	0	2.7	38.3
5.B. Apr.-May 1998 ${ }^{\text {h }}$	0	3.7	51.7
5.C. August 1998 ${ }^{\text {i }}$	0	4.6	65.1
6. LABOR			
6.A. Total family/mutual labor days(adult equiv. days/ha) ${ }^{\text {j }}$	135	92	140
6.B. Total wage labor (birr/ha) ${ }^{\mathbf{k}}$	62	36	71
7. ANIMAL TRACTION COST ${ }^{1}$ (birr/ha)	98	112	213
8. HAND TOOLS AND SACKS (birr/ha)	39.2	13.5	77.7
8.A. Hand tools ${ }^{\text {m }}$	2.8	2.9	5.5
8.B. Sacks ${ }^{\text {n }}$	36.3	10.5	72.2
9. NET INCOME/HA			
9.A. Jan. Sale ${ }^{0}$	2042.1	1029.1	2543.2
9.B. Apr.-May Sales ${ }^{\text {p }}$	2300.8	1160.3	2848.3
9.C. Aug. Sale ${ }^{\text {q }}$	3257.4	1648.0	4012.6
9.D. Aug. Sale, if storage losses decline by $\mathbf{5 0 \%}$	3577.2	1811.0	4405.7
9.E. Jan. Sale, 25\% Output Price Decline	1321.3	660.8	1655.8
9.F. Jan. Sale, 50\% Output Price Decline	600.5	292.5	768.4
10. NET INCOME/FAMILY AND MUTUAL LABOR DAY			
10.A. Jan. Sale ${ }^{\text {r }}$	15.1	11.2	18.2
10.B. Apr.-May Sale ${ }^{\text {s }}$	17.0	12.6	20.3
10.C. Aug. Sale ${ }^{\text {t }}$	24.1	17.9	28.7
10.D. Aug. Sale, if storage losses decline by $\mathbf{5 0 \%}$	26.5	19.7	31.5
10.E. Jan. Sale, 25\% Output Price Decline	9.8	7.2	11.8
10.F. Jan. Sale, 50\% Output Price Decline	4.4	3.2	5.5

${ }^{\text {a Source: }}$ crop cut estimates, GMRP/MSU/AAU/MOA/SG2000 Survey. Assumes no grain or straw lost during shelling. Assumes maize was harvested in November and storage losses are 1.98% per month, the average of estimates from Abraham et al. 1993.
${ }^{\text {b }}$ Source: EGTE price monitoring unit and GMRP/MSU/AAU/MOA/SG2000 Survey. Local market prices collected by EGTE are adjusted to farmgate prices using survey data on prices reported by farmers. Prices are average prices for white maize during January 1998, average April-May 1998, and August 1998.
${ }^{\text {c }}$ Grain yield* grain price.
${ }^{\text {d }}$ Adjusted as follows: if the farmer sold maize in January rather than April-May, it is assumed that earnings from the January sale would have been reinvested and earned the same rate of interest as the government program loan ($10 \% /$ year). The adjusted gross revenue is calculated by
deducting the compounded earnings druing the February-April/May period from the gross revenue.
${ }^{\text {e }}$ Adjusted as follows: if the farmer sold maize in January rather than August, it is assumed that earnings from the January sale would have been reinvested and earned the same rate of interest as the government program loan ($\mathbf{1 0 \%} / \mathrm{year}$). The adjusted gross revenue is calculated by deducting the compounded earnings druing the February-August period from the gross revenue.
${ }^{f}$ 4.A.+4.B.+4.C.+4.D.+4.E.+4.F. MOA/SG2000 maize package consists of (quantities/ha) 25 kg seed, 100 kg DAP, 100 kg urea. Mean cost reported by farmers.
${ }^{\text {g }}$ Source: GMRP/MSU/AAU/MOA/SG2000 Survey and rate information from MOA/SG2000. MOA program participants pay 10% interest annually. Assumes that period of loan is 10 months.
${ }^{\text {h }}$ Period of loan assumed to be 13.5 months.
iPeriod of loan assumed to be 17 months.
iSource: GMRP/MSU/AAU/MOA/SG2000 Survey. Includes shelling labor.
${ }^{\text {k V Valued at cash/in-kind payment rates provided by survey participants. }}$
Sum of (a) rental costs reported by survey respondents and (b) for owned/borrowed oxen, maintenance + depreciated value of animals and animal traction equipment multiplied by percentage of total farm represented by the sample plot.
${ }^{m}$ Depreciated value of 2 sickles, 2 hoes, and 2 spades. Purchase price, life and salvage value of equipment based on field reports by survey supervisors.
${ }^{\text {n }}$ Depreciated value of sacks needed to transport maize marketed in 1997--98 season. Number of sacks is adjusted for grain losses in storage. Since sacks are retained by famers and used for other purposes, cost is apportioned by multiplying depreciated sack value by percentage of total farm represented by sample plot. Purchase price, life, and value based on field reports by survey supervisors.
${ }^{\circ} 3 \mathrm{~A}-(4+5 . \mathrm{A} .+6 . \mathrm{B} .+7+8 \mathrm{~A}+8 \mathrm{~B})$
${ }^{\mathrm{P}} 3 \mathrm{~B}-(4+5 . B .+6 . B .+7+8 A+8 C)$
${ }^{9} 3 \mathrm{C}-(4+5 . \mathrm{C} .+6 . \mathrm{B} .+7+8 \mathrm{~A}+8 \mathrm{D})$
r9A/6A
9B/6A
${ }^{\text {t }} 9 \mathrm{C} / 6 \mathrm{~A}$

Table 29. Summary of Farm Level Enterprise Budget for Maize (West Shoa), by Technology Type

Budget Item	Local seed, no fertilizer	Improved seed + DAP+urea< recommended rate	Improved seed + DAP + urea $>=$ recommended rate
n used in calculations ${ }^{\text {a }}$	33	45	68
1. GRAIN YIELD ${ }^{\text {b }}$ (kg/ha)	3858	5784	5685
1.A. January 1998 adjusted yield	3707	5558	5463
1.B. April-May 1998 adjusted yield	3458	5185	5096
1.C. August 1998 adjusted yield	3225	4835	4752
1.D. Aug. 1998, if storage losses decline by $\mathbf{5 0 \%}$	3547	5318	5226
2. EST. FARMGATE PRICE ${ }^{\text {c }}$ (birr/kg)			
2.A. January 1998	0.69	0.69	0.69
2.B. April-May 1998	0.72	0.72	0.72
2.F. August 1998	0.89	0.89	0.89
3. GROSS REVENUE ${ }^{\text {d }}$			
3.A. Jan. Sale	2558.2	3835.3	3769.6
3.B. Apr.-May Sale ${ }^{\text {e }}$	2425.2	3636.4	3574.0
3.C. Aug. Sale ${ }^{\text {f }}$	2717.3	4074.7	4004.7
3.D. Aug. Sale, if storage losses decline by $\mathbf{5 0 \%}$	3000.5	4498.7	4420.9
4. PACKAGE COSTS ${ }^{\text {g }}$ (birr/ha)	71	533	730
4.A. Seed	71	110	151
4.B. DAP	0	210	289
4.C. Urea	0	210	289
4.D. Herbicide	0	3	1
4.E. Insecticide	0	0	0
4.F. Fungicide	0	0	0
5. INTEREST			
5.A. January $1998{ }^{\text {h }}$	0	9.0	7.0
5.B. Apr.-May 1998 ${ }^{\text {i }}$	0	12.0	10.0
5.C. August 1998 ${ }^{\text {j }}$	0	15	13
6. LABOR			
6.A. Total family/mutual labor days(adult equiv. days/ha) ${ }^{\mathbf{k}}$	204	158	172
6.B. Total wage labor (birr/ha) ${ }^{1}$	92	60	146
7. ANIMAL TRACTION COST ${ }^{\text {m }}$ (birr/ha)	63	91	96
8. HAND TOOLS AND SACKS (birr/ha)			
8.A. Hand tools ${ }^{\text {n }}$	1.3	1.6	1.7
8.B. Sacks--January ${ }^{0}$	14.8	38.4	30.0
8.C. Sacks--Apr.-May	13.8	35.9	27.9
8.D. Sacks--August	12.8	33.4	26.1
9. NET INCOME/HA			
9.A. Jan. Sale ${ }^{\text {p }}$	2316.1	3102.3	2758.9
9.B. Apr.-May Sales ${ }^{\text {q }}$	2184.1	2902.9	2562.4
9.C. Aug. Sale ${ }^{\text {r }}$	2477.2	3340.7	2991.9
9.D. Aug. Sale, if storage losses decline by $\mathbf{5 0 \%}$	2759.2	3761.4	3405.5
9.E. Jan. Sale, 25\% Output Price Decline	1676.5	2143.4	1816.5
9.F. Jan. Sale, 50\% Output Price Decline	1037.0	1184.6	874.1
10. NET INCOME/FAMILY AND MUTUAL LABOR DAY			
10.A. Jan. Sale ${ }^{\text {s }}$	11.4	19.6	16.0
10.B. Apr.-May Sale ${ }^{\text {t }}$	10.7	18.4	14.9
10.C. Aug. Sale ${ }^{\text {u }}$	12.1	21.1	17.4
10.D. Aug. Sale, if storage losses decline by 50%	13.5	23.8	19.8
10.E. Jan. Sale, 25\% Output Price Decline	8.2	13.6	10.6
10.F. Jan. Sale, 50\% Output Price Decline	5.1	7.5	5.1

[^6]seed+DAP.
${ }^{\text {b }}$ Source: crop cut estimates, GMRP/MSU/AAU/MOA/SG2000 Survey. Assumes no grain or straw lost during shelling. Assumes maize was harvested in November and storage losses are 1.98% per month, the average of estimates from Abraham et al. 1993. 1.D. scenario assumes that storage insecticide is used and grain losses are halved.
'Source: EGTE price monitoring unit and GMRP/MSU/AAU/MOA/SG2000 Survey. Local market prices collected by EGTE are adjusted to farmgate prices using survey data on prices reported by farmers. Prices are average prices for white maize during January 1998, average
April-May 1998, and August 1998.
${ }^{\mathrm{d}}$ Grain yield* grain price.
${ }^{\text {e }}$ Adjusted as follows: if the farmer sold maizein January rather than April-May, it is assumed that earnings from the January sale would have been reinvested and earned the same rate of interest as the government program loan ($10 \% /$ year). The adjusted gross revenue is calculated by deducting the compounded earnings druing the February-April/May period from the gross revenue.
${ }^{\text {f }}$ Adjusted as follows: if the farmer sold maize in January rather than August, it is assumed that earnings from the January sale would have been reinvested and earned the same rate of interest as the government program loan ($10 \% /$ year). The adjusted gross revenue is calculated by deducting the compounded earnings druing the February-August period from the gross revenue.
${ }^{\mathrm{g}}$ 4.A.+4.B.+4.C.+4.D.+4.E.+4.F. MOA/SG2000 maize package consists of (quantities/ha) 25 kg seed, 100 kg DAP, 100 kg urea. Mean cost reported by farmers.
'Source: GMRP/MSU/AAU/MOA/SG2000 Survey and rate information from MOA/SG2000. MOA program participants pay $\mathbf{1 0 \%}$ interest annually. Assumes that period of loan is 10 months.
Period of loan assumed to be 13.5 months.
iPeriod of loan assumed to be 17 months.
${ }^{\text {k }}$ Source: GMRP/MSU/AAU/MOA/SG2000 Survey. Includes shelling labor
'Valued at cash/in-kind payment rates provided by survey participants.
${ }^{\mathrm{m}}$ Sum of (a) rental costs reported by survey respondents and (b) for owned/borrowed oxen, maintenance + depreciated value of animals and animal traction equipment multiplied by percentage of total farm represented by the sample plot.
${ }^{\text {n }}$ Depreciated value of $\mathbf{2}$ sickles, 2 hoes, and 2 spades. Purchase price, life and salvage value of equipment based on field reports by survey supervisors.
${ }^{\circ}$ Depreciated value of sacks needed to transport maize marketed in 1997--98 season. Number of sacks is adjusted for grain losses in storage. Since sacks are retained by famers and used for other purposes, cost is apportioned by multiplying depreciated sack value by percentage of total farm represented by sample plot. Purchase price, life, and salvage value based on field reports by survey supervisors.
${ }^{\mathrm{P}} 3 \mathrm{~A}-(4+5 . \mathrm{A} .+6 . \mathrm{B} .+7+8 \mathrm{~A}+8 \mathrm{~B})$
${ }^{9} 3 B-(4+5 . B .+6 . B .+7+8 A+8 C)$
3C - $(4+5 . C .+6 . B .+7+8 A+8 D)$
9A/6A
t9B/6A
"9C/6A

Table 30. Summary of Farm Level Enterprise Budget for Maize (Jimma), by Technology Type

Budget Item	$\begin{gathered} \text { Local seed + } \\ \text { DAP } \\ \hline \end{gathered}$	```Improved seed + DAP+urea< rec. rate```	```Improved seed + DAP + urea >= rec. rate```
n used in calculations	43	58	50
1. GRAIN YIELD ${ }^{\text {a }}$ (kg/ha)	2905	6007	5922
1.A. January 1998 adjusted yield	2791	5773	5690
1.B. April-May 1998 adjusted yield	2604	5384	5308
1.C. August 1998 adjusted yield	2428	5022	4950
1.D. Aug. 1998, if storage losses decline by $\mathbf{5 0 \%}$	2671	5523	5444
2. EST. FARMGATE PRICE ${ }^{\text {b }}$ (birr/kg)			
2.A. January 1998	0.54	0.54	0.54
2.B. April-May 1998	0.65	0.65	0.65
2.F. August 1998	0.93	0.93	0.93
3. GROSS REVENUE ${ }^{\text {c }}$			
3.A. Jan. Sale	1507.1	3117.2	3072.6
3.B. Apr.-May Sale ${ }^{\text {d }}$	1654.5	3421.6	3372.6
3.C. Aug. Sale ${ }^{\text {e }}$	2168.8	4484.0	4420.6
3.D. Aug. Sale, if storage losses decline by $\mathbf{5 0 \%}$	2392.0	4946.0	4875.2
4. PACKAGE COSTS ${ }^{\text {f }}$ (birr/ha)	301	549	721
4.A. Seed	39	111	145
4.B. DAP	261	225	296
4.C. Urea	0	212	278
4.D. Herbicide	0	0	
4.E. Insecticide	0	0	0
4.F. Fungicide	1	1	1
5. INTEREST			
5.A. January 1998 ${ }^{\text {g }}$	3	14	13
5.B. Apr.-May 1998 ${ }^{\text {h }}$	4.0	19.0	18.0
5.C. August 1998 ${ }^{\text {i }}$	5.0	24.0	23.0
6. LABOR			
6.A. Total family/mutual labor days(adult equiv. days/ha) ${ }^{j}$	93	115	162
6.B. Total wage labor (birr/ha) ${ }^{\mathbf{k}}$	36	79	50
7. ANIMAL TRACTION COST ${ }^{\text {l }}$ (birr/ha)	98	144	134
8. HAND TOOLS AND SACKS (birr/ha)	15.4	70.4	47.9
8.A. Hand tools ${ }^{\text {m }}$	2.9	3.8	3.7
8.B. Sacks--January ${ }^{\text {n }}$	12.5	66.6	44.2
8.C. Sacks--Apr.-May	11.6	62.1	41.2
8.D. Sacks--August	10.8	57.9	38.4
9. NET INCOME/HA			
9.A. Jan. Sale ${ }^{\text {o }}$	1053.7	2260.8	2106.7
9.B. Apr.-May Sales ${ }^{\text {p }}$	1201.0	2564.7	2404.7
9.C. Aug. Sale ${ }^{\text {d }}$	1715.1	3626.3	3450.5
9.D. Aug. Sale, if storage losses decline by $\mathbf{5 0 \%}$	1937.2	4082.6	3901.3
9.E. Jan. Sale, 25\% Output Price Decline	990.9	2130.9	1978.7
9.F. Jan. Sale, 50\% Output Price Decline	509.5	1135.2	997.2
10. NET INCOME/FAMILY AND MUTUAL			
LABOR DAY			
10.A. Jan. Sale ${ }^{\text {r }}$	11.3	19.7	13.0
10.B. Apr.-May Sale ${ }^{\text {s }}$	12.9	22.3	14.8
10.C. Aug. Sale ${ }^{\text {t }}$	18.4	31.5	21.3
10.D. Aug. Sale, if storage losses decline by $\mathbf{5 0 \%}$	20.8	35.5	24.1
10.E. Jan. Sale, 25\% Output Price Decline	10.7	18.5	12.2
10.F. Jan. Sale, 50\% Output Price Decline	5.5	9.9	6.2

[^7]farmgate prices using survey data on prices reported by farmers. Prices are average prices for white maize during January 1998, average April-May 1998, and August 1998.
${ }^{\text {c }}$ Grain yield* grain price.
${ }^{\text {d }}$ Adjusted as follows: if the farmer sold maize in January rather than April-May, it is assumed that earnings from the January sale would have been reinvested and earned the same rate of interest as the government program loan ($10 \% /$ year $)$. The adjusted gross revenue is calculated by deducting the compounded earnings during the February-April/May period from the gross revenue.
${ }^{\text {e}}$ Adjusted as follows: if the farmer sold maize in January rather than August, it is assumed that earnings from the January sale would have been reinvested and earned the same rate of interest as the government program loan ($10 \% /$ year). The adjusted gross revenue is calculated by deducting the compounded earnings during the February-August period from the gross revenue.
${ }^{f}$ 4.A.+4.B.+4.C.+4.D.+4.E.+4.F. MOA/SG2000 maize package consists of (quantities/ha) 25 kg seed, 100 kg DAP, 100 kg urea. Mean cost reported by farmers.
${ }^{\text {S }}$ Source: GMRP/MSU/AAU/MOA/SG2000 Survey and rate information from MOA/SG2000. MOA program participants pay $\mathbf{1 0 \%}$ interest annually. Assumes that period of loan is 10 months.
${ }^{\text {h Period of loan assumed to be } 13.5 \text { months. }}$
iPeriod of loan assumed to be 17 months.
iSource: GMRP/MSU/AAU/MOA/SG2000 Survey. Includes shelling labor.
${ }^{\text {k V Valued at cash/in-kind payment rates provided by survey participants. }}$
'Sum of (a) rental costs reported by survey respondents and (b) for owned/borrowed oxen, maintenance + depreciated value of animals and animal traction equipment multiplied by percentage of total farm represented by the sample plot.
${ }^{m}$ Depreciated value of $\mathbf{2}$ sickles, 2 hoes, and 2 spades. Purchase price, life and salvage value of equipment based on field reports by survey supervisors.
${ }^{\text {n }}$ Depreciated value of sacks needed to transport maize marketed in 1997--98 season. Number of sacks is adjusted for grain losses in storage. Since sacks are retained by famers and used for other purposes, cost is apportioned by multiplying depreciated sack value by percentage of total farm represented by sample plot. Purchase price, life, and salvage value based on field reports by survey supervisors.
${ }^{\circ} 3 \mathrm{~A}-(4+5 . \mathrm{A} .+6 . \mathrm{B} .+7+8 \mathrm{~A}+8 \mathrm{~B})$
${ }^{\mathrm{p}} 3 \mathrm{~B}-(4+5 . \mathrm{B} .+6 . B .+7+8 \mathrm{~A}+8 \mathrm{C})$
${ }^{9} 3 \mathrm{C}-(4+5 . \mathrm{C} .+6 . \mathrm{B} .+7+8 \mathrm{~A}+8 \mathrm{D})$
r9A/6A
9B/6A
t9C/6A

Table 31. Summary of Farm Level Enterprise Budget for Tef (East Shoa), by Program Type

Budget Item	NEP Program	Traditional	Graduate
n used in calculations	60	60	60
1. YIELD ${ }^{\text {a }}$ (kg/ha)			
1.A. Grain Yield	1389	1364	1455
1.B. Straw Yield	2180	2025	2071
2. EST. FARMGATE PRICE ${ }^{\text {b }}$ (birr/kg)			
2.A. January 1998: Grain	2.04	2.04	2.04
2.B. January 1998: Straw	. 11	. 11	. 11
2.C. April-May 1998: Grain	2.11	2.11	2.11
2.D. April-May 1998: Straw	. 16	. 16	. 16
2.E. August 1998: Grain	2.51	2.51	2.51
2.F. August 1998: Straw	. 23	. 23	. 23
3. GROSS REVENUE ${ }^{\text {c }}$			
3.A. Jan. Sale	1903.6	2090.5	2193.4
3.B. Apr.-May Sale ${ }^{\text {d }}$	2008.9	2192.6	2299.5
3.C. Aug. Sale ${ }^{\text {e }}$	2602.7	2771.9	2912.5
4. PACKAGE COSTS ${ }^{\text {f }}$ (birr/ha)	655	540	571
4.A. Seed	150	167	190
4.B. DAP	251	214	227
4.C. Urea	226	141	129
4.D. Herbicide	28	18	25
4.E. Insecticide	0	0	0
4.F. Fungicide	0	0	0
5. INTEREST			
5.A. January 1998 ${ }^{\text {g }}$	28.0	20.0	19.7
5.B. Apr.-May 1998 ${ }^{\text {h }}$	41.9	30.1	29.5
5.C. August 1998 ${ }^{\text {i }}$	55.9	40.1	39.4
6. LABOR			
6.A. Total family/mutual labor days(adult equiv. days/ha) ${ }^{j}$	64	58	77
6.B. Total wage labor (birr/ha) ${ }^{\mathbf{k}}$	192	142	184
7. ANIMAL TRACTION COST ${ }^{1}$ (birr/ha)	291	210	224
8. HAND TOOLS AND SACKS ${ }^{\text {m }}$ (birr/ha)	6.5	4.9	5.7
8.A. Hand tools ${ }^{\text {n }}$ (birr)	2.2	1.6	1.6
8.B. Sacks ${ }^{0}$ (birr)	4.3	3.3	4.1
9. NET INCOME/HA			
9.A. Jan. Sale ${ }^{\text {p }}$	1903.6	2090.5	2193.4
9.B. Apr.-May Sale ${ }^{\text {q }}$	2008.9	2192.6	2299.5
9.C. Aug. Sale ${ }^{\text {r }}$	2602.7	2771.9	2912.5
9.D. Jan. Sale, 25\% Output Price Decline	1134.6	1338.6	1394.0
9.E. Jan. Sale, 50\% Output Price Decline	365.6	586.8	594.5
10. NET INCOME/FAMILY AND MUTUAL LABOR DAY			
10.A. Jan. Sale ${ }^{\text {s }}$	29.7	36.0	28.5
10.B. Apr.-May Sale ${ }^{t}$	31.4	37.8	29.9
10.C. Aug. Sale ${ }^{\text {u }}$	40.7	47.8	37.8
10.D. Jan. Sale, 25\% Output Price Decline	17.7	23.1	18.1
10.E. Jan. Sale, 50\% Output Price Decline	5.7	10.1	7.7

${ }^{\text {a }}$ Source: crop cut estimates, GMRP/MSU/AAU/MOA/SG2000 Survey. Assumes no grain or straw lost during threshing.
${ }^{\text {b }}$ Source: EGTE price monitoring unit and GMRP/MSU/AAU/MOA/SG2000 Survey. Local market prices collected by EGTE are adjusted to farmgate prices using survey data on prices reported by farmers. Prices are average prices for white teff during January 1998, average AprilMay 1998, and August 1998.
${ }^{\text {c }}$ Grain yield* grain price)+(straw yield*straw price)
${ }^{\text {d}}$ Adjusted as follows: if the farmer sold tef in January rather than April-May, it is assumed that earnings from the January sale would have been reinvested and earned the same rate of interest as the government program loan ($10 \% /$ year). The adjusted gross revenue is calculated by deducting the compounded earnings durng the February-April/May period from the gross revenue.
${ }^{\text {e}}$ Adjusted as follows: if the farmer sold tef in January rather than August, it is assumed that earnings from the January sale would have been reinvested and earned the same rate of interest as the government program loan ($10 \% /$ year $)$. The adjusted gross revenue is calculated by deducting the compounded earnings during the February-August period from the gross revenue.
${ }^{\mathrm{f}}$ 4.A.+4.B.+4.C.+4.D.+4.E.+4.F. MOA tef package consists of (quantities/ha) 35 kg seed, $100 \mathrm{~kg} \mathrm{DAP}, 100 \mathrm{~kg}$ urea, U-46 herbicide. Mean cost reported by farmers.
${ }^{\text {g }}$ Source: GMRP/MSU/AAU/MOA/SG2000 Survey and rate information from MOA/SG2000. MOA program participants pay $\mathbf{1 0 \%}$ interest annually. Assumes that period of loan is 7 months.
${ }^{\text {h Period of loan assumed to be } 10.5 \text { months. }}$
Period of loan assumed to be 14 months.
iSource: GMRP/MSU/AAU/MOA/SG2000 Survey.
${ }^{\text {k Valued at cash/in-kind payment rates provided by survey participants. }}$
Sum of (a) rental costs reported by survey respondents and (b) for owned/borrowed oxen, maintenance + depreciated value of animals and animal traction equipment multiplied by percentage of total farm represented by the sample plot.
${ }^{m}$ Sum of hand tool and sack costs.
${ }^{n}$ Depreciated value of $\mathbf{2}$ sickles, 2 hoes, and 2 spades. Purchase price, life and salvage value of equipment based on field reports by survey supervisors.
${ }^{\circ}$ Depreciated value of sacks needed to transport tef marketed in 1997--98 season. Since sacks are retained by famers and used for other purposes, cost is apportioned by multiplying depreciated sack value by percentage of total farm represented by sample plot. Purchase price and life based on field reports by survey supervisors.
p3 - $(4+5 . \mathrm{A} .+6 . \mathrm{B} .+7+8)$
${ }^{9} 3-(4+5 . B .+6 . B .+7+8)$
r3-(4+5.C. + 6.B. $+7+8)$
s9A/6A
t9B/6A
"9C/6A

Table 32. Summary of Farm Level Enterprise Budget for Tef (East Shoa), by Technology Type

Budget Item	$\begin{gathered} \text { Program } \\ \text { seed, } \\ \text { recommended } \\ \text { quantities } \\ \text { DAP, urea } \\ \hline \end{gathered}$	Saved (imp.) seed, near recommended quantities DAP, urea	Saved (imp.) seed, farmer choice DAP/urea
n used in calculations	35	63	69
1. YIELD ${ }^{\text {a }}$ (kg/ha)			
1.A. Grain Yield	1082	1523	1482
1.B. Straw Yield	2103	2144	2051
2. EST. FARMGATE PRICE ${ }^{\text {b }}$ (birr/kg)			
2.A. January 1998: Grain	2.04	2.04	2.04
2.B. January 1998: Straw	. 11	. 11	. 11
2.C. April-May 1998: Grain	2.11	2.11	2.11
2.D. April-May 1998: Straw	. 16	. 16	. 16
2.E. August 1998: Grain	2.51	2.51	2.51
2.F. August 1998: Straw	. 23	. 23	. 23
3. GROSS REVENUE ${ }^{\text {c }}$			
3.A. Jan. Sale	2442.4	3344.6	3250.5
3.B. Apr.-May Sale ${ }^{\text {d }}$	2558.1	3472.2	3373.2
3.C. Aug. Sale ${ }^{\text {e }}$	3054	4116	3997.2
4. PACKAGE COSTS ${ }^{\text {f }}$ (birr/ha)	659	643	536
4.A. Seed	146	177	172
4.B. DAP	254	231	235
4.C. Urea	224	213	108
4.D. Herbicide	35	22	21
4.E. Insecticide	0	0	0
4.F. Fungicide	0	0	0
5. INTEREST			
5.A. January 1998 ${ }^{\text {g }}$	31.0	23.5	19.2
5.B. Apr.-May 1998 ${ }^{\text {h }}$	46.5	35.3	28.8
5.C. August 1998 ${ }^{\text {i }}$	62	47.1	38.4
6. LABOR			
6.A. Total family/mutual labor days(adult equiv. days/ha) ${ }^{\mathrm{j}}$	68	67	66
6.B. Total wage labor (birr/ha) ${ }^{\mathbf{k}}$	141	227	154
7. ANIMAL TRACTION COST ${ }^{1}$ (birr/ha)	273	251	228
8. HAND TOOLS AND SACKS ${ }^{\text {m }}$ (birr/ha)	7.0	8.0	7.3
8.A. Hand tools ${ }^{\text {n }}$ (birr)	2.1	1.8	1.7
8.B. Sacks ${ }^{\text {o }}$ (birr)	4.9	6.2	5.6
9. NET INCOME/HA			
9.A. Jan. Sale ${ }^{\text {p }}$	1331.4	2192.1	2306.0
9.B. Apr.-May Sale ${ }^{\text {q }}$	1431.6	2385.0	2494.0
9.C. Aug. Sale ${ }^{\text {r }}$	1912.0	3139.7	3227.8
9.D. Jan. Sale, 25\% Output Price Decline	721.8	1356.4	1493.8
9.E. Jan. Sale, 50\% Output Price Decline	112.1	520.7	681.6
10. NET INCOME/FAMILY AND MUTUAL LABOR DAY			
10.A. Jan. Sale ${ }^{\text {s }}$	19.6	32.7	34.9
10.B. Apr.-May Sale ${ }^{t}$	21.1	35.6	37.8
10.C. Aug. Sale ${ }^{\text {u }}$	28.1	46.9	48.9
10.D. Jan. Sale, 25\% Output Price Decline	10.6	20.2	22.6
10.E. Jan. Sale, 50\% Output Price Decline	1.6	7.8	10.3

${ }^{\text {a Source: }}$ crop cut estimates, GMRP/MSU/AAU/MOA/SG2000 Survey. Assumes no grain or straw lost during threshing.
${ }^{\text {b }}$ Source: EGTE price monitoring unit and GMRP/MSU/AAU/MOA/SG2000 Survey. Local market prices collected by EGTE are adjusted to farmgate prices using survey data on prices reported by farmers. Prices are average prices for white teff during January 1998, average AprilMay 1998, and August 1998.
${ }^{\text {c/ }}$ Grain yield* grain price)+(straw yield*straw price)
${ }^{\text {d Adjusted as follows: if the farmer sold tef in January rather than April-May, it is assumed that earnings from the January sale would have }}$
been reinvested and earned the same rate of interest as the government program loan ($10 \% /$ year). The adjusted gross revenue is calculated by deducting the compounded earnings druing the February-April/May period from the gross revenue.
${ }^{\text {e }}$ Adjusted as follows: if the farmer sold tef in January rather than August, it is assumed that earnings from the January sale would have been reinvested and earned the same rate of interest as the government program loan ($10 \% /$ year $)$. The adjusted gross revenue is calculated by deducting the compounded earnings druing the February-August period from the gross revenue.
${ }^{\mathrm{f}}$ 4.A.+4.B.+4.C.+4.D.+4.E.+4.F. MOA tef package consists of (quantities/ha) 35 kg seed, 100 kg DAP, 100 kg urea, U-46 herbicide. Mean cost reported by farmers.
${ }^{\text {g }}$ Source: GMRP/MSU/AAU/MOA/SG2000 Survey and rate information from MOA/SG2000. MOA program participants pay 10% interest annually. Assumes that period of loan is 7 months.
${ }^{\text {h Period of loan assumed to be } 10.5 \text { months. }}$
Period of loan assumed to be 14 months.
iSource: GMRP/MSU/AAU/MOA/SG2000 Survey.
${ }^{\text {k }}$ Valued at cash/in-kind payment rates provided by survey participants.
Sum of (a) rental costs reported by survey respondents and (b) for owned/borrowed oxen, maintenance + depreciated value of animals and animal traction equipment multiplied by percentage of total farm represented by the sample plot.
${ }^{\mathrm{m}}$ Sum of hand tool and sack costs.
Depreciated value of $\mathbf{2}$ sickles, $\mathbf{2}$ hoes, and 2 spades. Purchase price, life and salvage value of equipment based on field reports by survey supervisors.
Depreciated value of sacks needed to transport tef marketed in 1997--98 season. Since sacks are retained by famers and used for other purposes, cost is apportioned by multiplying depreciated sack value by percentage of total farm represented by sample plot. Purchase price, life, and salvage value based on field reports by survey supervisors.
p3 - ($4+$ 5.A. $+6 . B .+7+8)$
${ }^{9} 3-(4+5 . B .+6 . B .+7+8)$
3-(4+5.C. + 6.B. + $7+8$)
9A/6A
9B/6A
${ }^{4} 9 \mathrm{C} / 6 \mathrm{~A}$

APPENDIX 4: ECONOMIC BUDGETS

PART 1: SUMMARY OF ECONOMIC BUDGETS FOR MAIZE AND TEFF

Table 33. Summary of Economic Budgets for Maize by Zone, Program Type and Input Level

multiplied by percentage of total farm represented by the sample plot. Maintenance and depreciation values based on reports by survey supervisors.
Depreciated value of 2 sickles, 2 hoes, and 2 spades and value of sacks needed to transport maize marketed in 1997/98 season.. Purchase price, life and value based on field reports by survey supervisors. Number of sacks is adjusted for grain losses in storage. Since sacks are retained by famers and used for other purposes, cost is apportioned by multiplying depreciated sack value by percentage of total farm represented by sample plot. Purchase price, life, and value based on field reports by survey supervisors.
jValued at cash/in-kind payment rates provided by survey participants.
${ }^{\text {k}}$ Family and mutual labor was valued at 0.5 of the median wage rate for each zone, which ranged from 3-6 birr/day.
'Gross revenue - (package costs + cost of capital + hand tools and sacks + purchased labor + value of family and mutual labor).
${ }^{\mathrm{m}}$ Calculations based on MOA data presented in Gordon, Habtemariam, and Kiflu 1995. Estimated extension and credit costs are 843 birr/ha.
${ }^{\text {f }}$ Assumes low fertilizer prices. For detailed calculations, see Tables 37 and 38.

Table 34. Summary of Economic Budgets for Teff by Zone, Program Type and Input Level

Zone/Budget Item	EAST SHOA					
	Program Type			Input Level		
	MOA/SG	Traditional	Graduate	Prog. seed, recommended quantities DAP, urea	Saved (imp) seed, near recommended DAP, urea	$\begin{array}{r} \text { Saved (imp) } \\ \text { seed,near } \\ \text { recommended } \\ \text { DAP, 50\% urea } \\ \hline \end{array}$
n used in calculations	60	60	60	35	63	69
1. YIELD $(\mathrm{kg} / \mathrm{ha})^{\text {a }}$						
Grain	1389	1364	1455	1082	1523	1482
Straw	2180	2025	2071	2103	2144	2051
2. PRICE (birr/kg)						
Straw ${ }^{\text {b }}$	0.11	0.11	0.11	0.11	0.11	0.11
Import Parity ${ }^{\text {c }}$	1.95	1.95	1.95	1.95	1.95	1.95
3. GROSS REVENUE (birr/ha)	2962	2895	3078	2354	3220	3129
4. PACKAGE COSTS (birr/ha)						
Fertilizer, Seed, Pest. (Hi Fert) ${ }^{\text {d }}$	699	571	617	703	694	570
Fertilizer, Seed, Pest. (Lo Fert.) ${ }^{\text {e }}$	576	489	533	581	575	499
5. COST OF CAPITAL (birr/ha) ${ }^{\text {f }}$						
Fertilizer, Seed, Pest. (Hi Fert)	105	86	93	105	104	86
Fertilizer, Seed, Pest. (Lo Fert.)	86	73	80	87	86	75
6. ANIMAL TRACTION COSTS						
(birr/ha) ${ }^{\text {g }}$	291	210	224	273	251	228
7. HAND TOOLS AND SACKS (birr/ha) ${ }^{\text {h }}$	7	5	6	7	8	7
8. LABOR (birr/ha)						
Purchased labor ${ }^{\text {i }}$	192	142	184	141	227	154
Value of family and mutual labor ${ }^{\mathbf{j}}$	171	155	205	181	179	176
9. NET INCOME ${ }^{\text {k }}$ (Birr/ha)						
Import Parity Hi Fert Price	1498	1728	1750	943	1757	1908
Import Parity Lo Fert Price	1640	1822	1846	1084	1894	1990
Import Parity Hi Fert incl. extension, credit						
Import Parity Lo Fert incl. extension, credit costs	797	n/a	1003	241	1051	1147
Import Parity Hi Fert incl. 50\% extension, credit costs	1077		1328	521	1335	1486
Import Parity Lo Fert incl. 50\% extension, credit costs	1218		1425	662	1472	1569

Sources: Survey and secondary data
${ }^{\text {a }}$ Source: crop cut estimates, GMRP/MSU/AAU/MOA/SG2000 Survey. Assumes no grain or straw lost during threshing or storage.
${ }^{\text {c Import parity price. Since teff is not widely traded on the world market, the import parity price for wheat, a substitute for teff in Ethiopia, is calculated instead. }}$
Because there is a significant price difference between teff and wheat in the domestic market, however, a price premium of 40% (reflecting the higher value consumers place on teff over wheat) was added to the wheat price based on price data from the FEWS-European Union Food Security Project. Detailed calculations are presented in Table 36.
${ }^{\text {d}}$ Assumes the following fertilizer prices: DAP(FOB US Gulf) USD 240; urea (FOB Middle East port) USD 225.. For detailed calculations, see Tables 37 and 38. Assumes that the market price of seed and pesticides accutately reflects their economic value.
${ }^{\mathrm{e}}$ Assumes the following fertilizer prices: DAP(FOB US Gulf) USD 200, urea (FOB Middle East port) USD 100. Quantities and costs were based on survey data and interviews with SG/NEP program administrators. Import parity calculations for fertilizer are shown in Tables 37 and 38.
${ }^{\text {f }}$ The economic opportunity cost of cash investments in agricultural production is estimated as $\mathbf{1 5 \%}$, based on the average market in terest rate in non-agricultural sectors (UNDP 1997).
${ }^{\text {g }}$ Sum of (a) rental costs reported by survey respondents and (b) for owned/borrowed oxen, maintenance + depreciated value of animals and animal traction equipment multiplied by percentage of total farm represented by the sample plot. Maintenance and depreciation values based on reports by survey supervisors.
${ }^{\text {h}}$ Depreciated value of 2 sickles, 2 hoes, and 2 spades and value of sacks needed to transport maize marketed in 1997/98 season.. Purchase price, life and value based on field reports by survey supervisors. Number of sacks is adjusted for grain losses in storage. Since sacks are retained by famers and used for other purposes, cost is apportioned by multiplying depreciated sack value by percentage of total farm represented by sample plot. Purchase price, life, and value based on field reports by survey supervisors.
${ }^{i}$ Valued at cash/in-kind payment rates provided by survey participants.
${ }^{j}$ Family and mutual labor was valued at 0.5 of the median wage rate for each zone, which ranged from 3-6 birr/day.
${ }^{\text {k }}$ gross revenue - (package costs + cost of capital + hand tools and sacks + purchased labor + value of family and mutual labor).
${ }^{1}$ Calculations based on MOA data presented in Gordon, Habtemariam, and Kiflu 1995. Estimated extension and credit costs are 843 birr/ha.

PART 2: CALCULATION OF ECONOMIC PRICES FOR MAIZE AND TEFF

Assumptions for Maize and Teff Price Calculations

Location Distance	Distance road (km)	Rate/ton/km	Handling costs birr/qt	Storage costs birr/qt
Assab- Addis Ababa	762	0.35	0.5	0.2
Assab-Jimma	1228	0.35	0.5	0.25
Assab-Weliso (km)	998	0.35	0.5	0.2
Assab-Debre Zeit	835	0.35	0.5	0.2
Djibouti-Addis Ababa	951	0.39	0.5	0.2
Djibouti-Jimma	1271	0.39	0.5	0.25
Djibouti-Weliso	1041	0.39	0.5	0.2
Djibouti-Debre Zeit	878	0.39	0.5	0.2
Addis Ababa-Weliso	115	0.5	0.5	
Addis Ababa-Jimma	343	0.5	0.5	
Addis Ababa-Debre Zeit	73	0.5		

2. Exchange rate ${ }^{\text {b }}$

Average marginal rate October 1997-August 1998: 6.97 birr = 1 USD
Average parallel rate October 1997-August 1998: 7.15 birr = 1 USD
${ }^{\text {a }}$ Source: Kassahun 1998
${ }^{\text {b }}$ Source: National Bank of Ethiopia 1998

Table 35. Calculation of Import and Export Parity Prices for Maize

1. Calculation of on-farm import parity prices
(a) Calculation of wholesale price in Addis Ababa at import parity

	USD/ton	
Item	Assab	Djibouti
Yellow maize, FOB Gulf ${ }^{\text {a }}$	106.00	106.00
Premium for white maize ${ }^{\text {b }}$	10.00	10.00
Freight and insurance, Gulf to Assab/Djibouti ${ }^{\text {c }}$	36.06	36.06
C.I.F. Assab/Djibouti	152.06	152.06
Bank Charges @ 1.25\% CIF ${ }^{\text {d }}$	1.90	1.90
Transit charge ${ }^{\text {d }}$	2.61	3.40
Port charges ${ }^{\text {d }}$	1.00	1.12
Stevedoring ${ }^{\text {d }}$	6.50	6.00
Crainage ${ }^{\text {d }}$	2.00	0
Bagging ${ }^{\text {d }}$	4.25	4.25
Losses @ 0.5\% CIF ${ }^{\text {d }}$	0.76	0.76
Administration, overhead ${ }^{\text {d }}$	0.15	0.15
Cost of capital@10.5\% for 3 months on 100% CIF ${ }^{\text {d }}$	3.99	3.99
Procurement cost F.O.T.	175.22	173.63
Procurement margin ${ }^{\text {e }}$	2.87	2.87
Distributor Price F.O.T.	178.09	176.50
Transport to Addis Ababa ${ }^{\text {f }}$	38.02	52.88
Unloading into store	0.72	0.72
Cost delivered to warehouse	216.83	230.10
Storage -- 1 month	0.29	0.29

	USD/ton	
Item	Assab	Djibouti
Wholesale margin ${ }^{\text {g }}$	2.87	2.87
Wholesale price -- Addis Ababa	219.99	233.26
(b) Calculation of price to farmer in Weliso		
Item	Assab	Djibouti
Wholesale price -- Addis Ababa	219.99	233.26
Overheads/profit margin of trader ${ }^{\text {g }}$	2.87	2.87
Transport from Weliso to Addis	5.74	5.74
Ababa		
Transport from farm to Weliso ${ }^{\text {h }}$	8.55	8.55
Bags ${ }^{\text {i }}$	9.79	9.79
Price paid to Weliso farmer	193.04	206.30
(c) Calculation of price to farmer in Jimma		
Item	Assab	Djibouti
Wholesale price -- Addis Ababa	219.99	233.26
Overheads/profit margin of trader ${ }^{\text {g }}$	2.87	2.87
Transport from Jimma to Addis	17.12	17.12
Ababa		
Transport from farm to Jimma ${ }^{\text {h }}$	9.27	9.27
Bags ${ }^{\text {i }}$	8.39	8.39
Price paid to Weliso farmer	182.35	195.61

2. Calculation of economic on-farm prices based on export parity
(a) Maximum Price to Weliso farmers supplying Kenya

	USD/ton
Item	High Price
CIF Mombasa ${ }^{\text {j }}$	194.00
Freight and insurance, Assab-	20.00
Mombasa ${ }^{\text {k }}$	
F.O.B. Assab/Djibouti	174.00
Wholesaler/exporter's margin ${ }^{1}$	5.74
Subtotal	168.26
Transit charge ${ }^{\text {d }}$	2.61
Port charges ${ }^{\text {d }}$	1.00
Stevedoring ${ }^{\text {d }}$	6.50
Crainage ${ }^{\text {d }}$	1.00
Losses @ 0.5\% CIF ${ }^{\text {d }}$	0.87
Port administration, overhead ${ }^{\text {d }}$	0.15
Informal trader's margin ${ }^{\text {e }}$	2.87
Transport from Weliso to port	50.00
Loading into truck	1.00
Transport from farmgate to Weliso ${ }^{\text {h }}$	8.55
Bags	9.79
Price paid to Weliso farmer	84.00

(b) Maximum Price to Jimma farmers supplying Kenya

	USD/ton
Item	High Price
CIF Mombasa ${ }^{\text {j }}$	194.00
Freight and insurance, Assab-	20.00
Mombasa ${ }^{\text {k }}$	
F.O.B. Assab/Djibouti	174.00
Wholesaler/exporter's margin ${ }^{1}$	5.74
Subtotal	168.26
Transit charge ${ }^{\text {d }}$	2.61
Port charges ${ }^{\text {d }}$	1.00
Stevedoring ${ }^{\text {d }}$	6.50
Crainage ${ }^{\text {d }}$	1.00
Losses @ 0.5\% CIF ${ }^{\text {d }}$	0.87
Port administration, overhead ${ }^{\text {d }}$	0.15
Informal trader's margin ${ }^{\text {e }}$	2.87
Transport from Jimma to port	61.00
Loading into truck	1.00
Transport from farmgate to Jimma ${ }^{\text {h }}$	9.27
Bags	8.39
Price paid to Jimma farmer	74.00

${ }^{\text {a }}$ Average yellow maize price October 1997-August 1998 F.O.B. U.S. Gulf. This is the time period when imported maize intended to substitute for 1997/98 domestic production would be purchased. Source:
FAO/GIEWS Food Outlook No. 1-4. www.fao.org/waicent/faoinfo/economic/giews
${ }^{\text {b }}$ Based on Coulter 1995.
'IFDC 1993.
${ }^{\mathrm{d}}$ Kassahun 1998.
${ }^{\text {e }}$ Estimated at 2 birr/qt.
${ }^{\text {f }}$ Assumes that $\mathbf{7 5 \%}$ of transport cost is composed of traded goods and valued at the parallel exchange rate.
${ }^{\text {g }}$ Estimated at 2 birr/qt.
${ }^{\text {h }}$ Source: survey supervisors' reports. Assumes that 75% of transport cost is composed of traded goods and valued at the parallel exchange rate.
${ }^{\text {i}}$ Full price for $10-100 \mathrm{~kg}$ bags. Data from survey supervisors' reports. Assumes that bags are imported and values them at parallel exchange rate.
${ }^{\mathrm{j}} 1997$ price (T.Jayne, personal communication).
${ }^{\mathrm{k}}$ Estimated.
Estimated at 4 birr/qt.

Table 36. Calculation of Import Parity Prices for Wheat

1. Calculation of on-farm import parity prices
(a) Calculation of wholesale price in Addis Ababa at import parity

	USD/ton	
Item	Assab	Diibouti
No. 2 hard winter wheat, FOB Gulf ${ }^{\text {a }}$	135.40	135.40
Tef premium ${ }^{\text {b }}$	54.16	54.16
Freight and insurance, Gulf to Assab/Djibouti ${ }^{\text {c }}$	36.35	36.35
C.I.F. Assab/Djibouti	225.91	225.91
Bank Charges @ 1.25\% CIF ${ }^{\text {d }}$	2.82	2.82
Transit charge ${ }^{\text {d }}$	2.61	3.40
Port charges ${ }^{\text {d }}$	1.00	1.12

	USD/ton	
Item	Assab	Djibouti
Stevedoring ${ }^{\text {d }}$	6.50	6.00
Crainage ${ }^{\text {d }}$	2.00	0
Bagging ${ }^{\text {d }}$	4.25	4.25
Losses @ 0.5\% CIF ${ }^{\text {d }}$	1.13	1.13
Administration, overhead ${ }^{\text {d }}$	0.15	0.15
Cost of capital@10.5\% for 3 months on 100% CIF $^{\text {d }}$	5.93	5.93
Procurement cost F.O.T.	252.31	250.72
Procurement margin ${ }^{\text {e }}$	2.87	2.87
Distributor Price F.O.T.	255.18	253.59
Transport to Addis Ababa ${ }^{\text {f }}$	38.02	52.88
Unloading into store	0.72	0.72
Cost delivered to warehouse	293.92	307.18
Storage -- 1 month	0.29	0.29
Wholesale margin ${ }^{\text {g }}$	2.87	2.87
Wholesale price -- Addis Ababa	297.08	310.34
(b) Calculation of price to farmer in Debre Zeit		
Item	Assab	Djibouti
Wholesale price -- Addis Ababa	297.08	310.34
Overheads/profit margin of trader ${ }^{\text {g }}$	2.87	2.87
Transport from Debre Zeit to Addis	3.64	3.64
Ababa		
Transport from farm to Debre Zeit ${ }^{\text {h }}$	17.11	17.11
Bags ${ }^{\text {i }}$	5.59	5.59
Price paid to Debre Zeit farmer	267.86	281.13

${ }^{\text {a Average price October 1997-August } 1998 \text { F.O.B. U.S. Gulf. This is the period when imported wheat }}$ intended to substitute for 1997/98 domestic production would be purchased. Source: FAO/GIEWS Food Outlook No. 1-4. www.fao.org/waicent/faoinfo/economic/giews
${ }^{\text {b }}$ Price premium for tef over wheat is estimated at 40%, based on reviews of 1998 FEWS-EC Food Security Bulletin and the 1985-96 trend (GMRP 1997).
${ }^{\text {c }}$ IFDC 1993.
${ }^{\text {d }}$ Kassahun 1998.
${ }^{\text {e }}$ Estimated at 2 birr/qt.
${ }^{\text {f }}$ Assumes that $\mathbf{7 5 \%}$ of transport cost is composed of traded goods and valued at the parallel exchange rate.
${ }^{\text {g }}$ Estimated at 2 birr/qt.
${ }^{\text {h }}$ Source: survey supervisors' reports. Assumes that 75% of transport cost is composed of traded goods and valued at the parallel exchange rate.
${ }^{\text {i}}$ Full price for $10-100 \mathrm{~kg}$ bags. Data from survey supervisors' reports. Assumes that bags are imported; they are valued at the parallel exchange rate.
${ }^{\text {j }} 1997$ price (T.Jayne, personal communication).
${ }^{\text {k }}$ Estimated.
${ }^{1}$ Estimated at 4 birr/qt.

PART 3: CALCULATION OF ECONOMIC PRICES FOR DAP AND UREA FERTILIZERS

Assumptions for Fertilizer Price Calculations

2. Exchange rate ${ }^{\text {b }}$

Average marginal rate November 1996-March 1997: 6.5 birr = 1 USD
Average parallel rate November 1996-March 1997: 7.13 birr = 1 USD
${ }^{\text {a }}$ Source: Kassahun 1998
${ }^{\mathrm{b}}$ Source: National Bank of Ethiopia 1998. This is the time period when fertilizer was purchased for the 1997 season

Table 37. Calculation of Import Parity Prices for DAP

(a) Calculation of wholesale price in Nazret at import parity

Item	High Price - USD/ton		Low Price - USD/ton	
	Assab	Djibouti	Assab	Djibouti
DAP FOB US Gulf ${ }^{\text {a }}$	240.00	240.00	200.00	200.00
Freight and insurance ${ }^{\text {b }}$	37.40	37.40	37.00	37.00
C.I.F. Assab/Djibouti	277.40	277.40	237.00	237.00
Bank charges @ 1.25\% CIF ${ }^{\text {c }}$	3.47	3.47	2.96	2.96
Transit charges ${ }^{\text {c }}$	2.61	3.40	2.61	3.40
Port charges ${ }^{\text {c }}$	1.00	1.12	1.00	1.12
Stevedoring ${ }^{\text {c }}$	6.50	6.00	6.50	6.00
Crainage ${ }^{\text {c }}$	2.00	0.00	2.00	0.00
Equipment in hold ${ }^{\text {c }}$	0.27	0.27	0.27	0.27
Bagging ${ }^{\text {c }}$	4.25	4.25	4.25	4.25
Losses@ 5\% CIF ${ }^{\text {c }}$	1.39	1.39	1.19	1.19
Port administration and overhead ${ }^{\text {c }}$	0.15	0.15	0.15	0.15
Interest @ $\mathbf{1 0 . 5 \%}$ for $3 \mathrm{mo} .100 \%{ }^{\text {c }}$	7.28	7.28	6.22	6.22
CIF ${ }^{\text {c }}$				
Procurement cost F.O.T.	306.32	304.73	264.15	262.56
Procurement margin ${ }^{\text {d }}$	3.07	3.07	3.07	3.07

Distributor Price F.O.T.	309.39	307.80	267.22	265.63
Transport Assab/Djibouti to	41.26	48.50	41.26	48.50
Nazret ${ }^{\text {e }}$				
Unloading into store ${ }^{\text {c }}$	0.77	0.77	0.77	0.77
Cost delivered to warehouse	351.42	357.07	309.25	314.90
Storage -- 2 months ${ }^{\text {c }}$	1.08	1.08	1.08	1.08
Loading into truck ${ }^{\text {c }}$	0.77	0.77	0.77	0.77
Wholesale/retail margin ${ }^{\text {d }}$	3.07	3.07	3.07	3.07
Wholesale price -- Nazret	356.34	361.99	314.17	319.82

(b) Calculation of price to farmer in Weliso				
Wholesale price -- Nazret	356.34	361.99	314.17	319.82
Transport from Nazret to Weliso ${ }^{\text {e }}$	11.21	11.21	11.21	11.21
Unloading into store ${ }^{\text {c }}$	0.77	0.77	0.77	0.77
Storage -- 1 month ${ }^{\text {c }}$	0.31	0.31	0.31	0.31
Transport -- Weliso to farm ${ }^{\text {f }}$	9.02	9.02	9.02	9.02
Price at Weliso farmgate	377.65	383.30	335.48	341.13
(c) Calculation of price to farmer in Jimma				
Wholesale price -- Nazret	356.34	361.99	314.17	319.82
Transport from Nazret to Jimma ${ }^{\text {e }}$	23.21	23.21	23.21	23.21
Unloading into store ${ }^{\text {c }}$	0.77	0.77	0.77	0.77
Storage -- 1 month ${ }^{\text {c }}$	0.31	0.31	0.31	0.31
Transport -- Jimma to farm ${ }^{\text {f }}$	9.77	9.77	9.77	9.77
Price at Jimma farmgate	390.40	396.05	348.23	353.88

(b) Calculation of price to farmer in Debre Zeit				
Wholesale price -- Nazret	356.34	361.99	314.17	319.82
Transport from Nazret to Debre ${ }^{\text {e }}$	2.68	2.68	2.68	2.68
Unloading into store ${ }^{\text {c }}$	0.77	0.77	0.77	0.77
Storage -- 1 month ${ }^{\text {c }}$	0.31	0.31	0.31	0.31
Transport -- Debre Zeit to farm ${ }^{\text {f }}$	18.04	18.04	18.04	18.04
Price at Debre Zeit farmgate	378.14	383.79	335.98	341.62

${ }^{\text {a }}$ Sources: NFIA 1996 (high); World Bank 1995 (low)
${ }^{\text {b }}$ IFDC 1993
'Kassahun 1998
${ }^{\mathrm{d}}$ Estimated at 2 birr/qt.
${ }^{\text {e }}$ Assumes that 75% of transport cost is composed of traded goods and valued at the parallel exchange rate. 'Source: survey supervisors' reports. Assumes that 75% of transport cost is composed of traded goods and valued at the parallel exchange rate.
${ }^{\text {g }}$ Full price for $10-100 \mathrm{~kg}$ bags. Data from survey supervisors' reports. Assumes that bags are imported; they are valued at the parallel exchange rate.

Table 38. Calculation of Import Parity Prices for Urea

(a) Calculation of wholesale price in Nazret at import parity

Item	High Price - USD/ton		Low Price - USD/ton	
Urea FOB Middle East ${ }^{\text {a }}$	$\frac{225.00}{}$	225.00	$\frac{100.00}{}$	- 100.00
Freight and insurance ${ }^{\text {b }}$	17.25	17.25	16.00	16.00
C.I.F. Assab/Djibouti	242.25	242.25	116.00	116.00
Bank charges @ 1.25% CIF $^{\text {c }}$	3.03	3.03	1.45	1.45
Transit charges ${ }^{\text {c }}$	2.61	3.40	2.61	3.40
Port charges ${ }^{\text {c }}$	1.00	1.12	1.00	1.12
Stevedoring ${ }^{\text {c }}$	6.50	6.00	6.50	6.00
Crainage ${ }^{\text {c }}$	2.00	0.00	2.00	0.00
Equipment in hold ${ }^{\text {c }}$	0.00	0.00	0.00	0.00
Bagging ${ }^{\text {c }}$	4.25	4.25	4.25	4.25
Losses@ 5\% CIF ${ }^{\text {c }}$	1.21	1.21	0.58	0.58
Port administration and overhead ${ }^{\text {c }}$	0.15	0.15	0.15	0.15
Interest @ $\mathbf{1 0 . 5 \%}$ for $3 \mathrm{mo} .100 \%{ }^{\text {c }}$	6.36	6.36	3.05	3.05
Procurement cost F.O.T.	269.36	267.77	137.59	136.00
Procurement margin ${ }^{\text {d }}$	3.07	3.07	3.07	3.07
Distributor Price F.O.T.	272.43	270.84	140.66	139.07
Transport Assab/Djibouti to	39.42	46.33	39.42	46.33
Nazret ${ }^{\text {e }}$				
Unloading into store ${ }^{\text {c }}$	0.77	0.77	0.77	0.77
Cost delivered to warehouse	312.62	317.94	180.84	186.17
Storage -- 2 months ${ }^{\text {c }}$	1.08	1.08	1.08	1.08
Loading into truck ${ }^{\text {c }}$	0.77	0.77	0.77	0.77
Wholesale/retail margin ${ }^{\text {d }}$	3.07	3.07	3.07	3.07
Wholesale price -- Nazret	317.54	322.86	185.76	191.09

(b) Calculation of price to farmer in Weliso

Wholesale price -- Nazret	317.54	322.86	185.76	191.09
Transport from Nazret to Weliso ${ }^{\text {e }}$	11.21	11.21	11.21	11.21
Unloading into store ${ }^{\text {c }}$	0.77	0.77	0.77	0.77
Storage -- 1 month ${ }^{\text {c }}$	0.31	0.31	0.31	0.31
Transport -- Weliso to farm ${ }^{\text {f }}$	9.02	9.02	9.02	9.02
Price at Weliso farmgate	338.85	344.17	207.07	212.40

(c) Calculation of price to farmer in Jimma				
Wholesale price -- Nazret	317.54	$\mathbf{3 2 2 . 8 6}$	$\mathbf{1 8 5 . 7 6}$	$\mathbf{1 9 1 . 0 9}$
Transport from Nazret to Jimma	e	23.21	23.21	23.21
Unloading into store $^{\text {c }}$	0.77	0.77	0.77	0.21
Storage -- $^{\text {1 month }}$		0.31	0.31	0.31
Transport -- Jimma to farm		0.31		
Price at Jimma farmgate	$\mathbf{9 . 7 7}$			

(b) Calculation of price to farmer in Debre Zeit

Wholesale price -- Nazret 317.54

| Transport from Nazret to Debre ${ }^{\mathrm{e}}$ | 2.68 | 2.68 | 2.68 | $\mathbf{2 . 6 8}$ |
| :--- | :--- | :--- | :--- | :--- | Unloading into store ${ }^{\mathrm{c}}$

0.77 0.77
0.77
0.77

Storage -- 1 month $^{\mathrm{c}}$	0.31	0.31	0.31	0.31
Transport -- Debre Zeit to farm				
Price at Debre Zeit farmgate	$\mathbf{1 8 . 0 4}$			

${ }^{\text {a }}$ Sources: NFIA 1996 (high); Stepanek 1999 (low)
${ }^{\text {b }}$ IFDC 1993
'Kassahun 1998
${ }^{\text {d }}$ Estimated at 2 birr/qt.
${ }^{e}$ Assumes that 75% of transport cost is composed of traded goods and valued at the parallel exchange rate. ${ }^{\text {f }}$ Source: survey supervisors' reports. Assumes that 75% of transport cost is composed of traded goods and valued at the parallel exchange rate.
${ }^{\mathrm{g}}$ Full price for 10-100 kg bags. Data from survey supervisors' reports. Assumes that bags are imported; they are valued at the parallel exchange rate.

REFERENCES

Central Statistical Authority. 1997. Agricultural Sample Surveys, Meher Season Crops, 1997/98. CSA Bulletin 171. Addis Ababa: CSA.

Coulter, Jonathan. 1995. Maize Marketing and Pricing Study -- Mozambique: Main Report and Appendices. Report No. R 2247 (C). Kent, England: Natural Resources Institute.

Grain Marketing Research Project. 1997. The Response of Ethiopian Cereals Markets to Liberalization. Market Analysis Note \#2. Addis Ababa: GMRP.

International Fertilizer Development Center. 1993. Ethiopia Fertilizer and Transport Sector Assessment. Final report submitted to USAID/Ethiopia. Muscle Shoals: IFDC.

National Bank of Ethiopia. 1998. Exchange Rates 1993-98. Addis Ababa, Ethiopia. Mimeo.
National Fertilizer Industry Agency. 1996. Detail Price Build-Up for DAP and Urea New Procurement in 1996/97. Addis Ababa, Ethiopia. Mimeo.

United Nations Development Programme. 1997. Study on Deregulation of Fertilizer Prices and Withdrawal of Subsidy—Ethiopia. Rome: UNDP/FAO.

[^0]: ${ }^{1}$ This method was based on recommendations from Drs. Rick Ward and Richard Harwood of MSU's Department of Crop and Soil Sciences and Mr. Tewabe Mihret of the Central Statistical Agency, Addis Ababa.

[^1]: ${ }^{2}$ Respectively, Professor, Department of Zoology, Michigan State University, and Visiting Assistant Professor, Department of Agricultural Economics, Michigan State University

[^2]: 300=DAP 400=Urea
 $700=$ storage insecticide $800=$ fungicide

[^3]: 300=DAP 400=Urea
 $700=$ storage insecticide $800=$ fungicide

[^4]: 1= plowing oxen
 4= calves (<2 years) 5= horses
 $7=$ sheep and goats

[^5]: $1=$ yes

[^6]: ${ }^{\text {a }}$ Two households surveyed are excluded from this analysis because they represent unique technology types: local seed+DAP+urea; improved

[^7]: ${ }^{\text {a }}$ Source: crop cut estimates, GMRP/MSU/AAU/MOA/SG2000 Survey. Assumes no grain or straw lost during shelling. Assumes maize was harvested in November and storage losses are 1.98% per month, the average of estimates from Abraham et al. 1993.
 ${ }^{\mathrm{b}}$ Source: EGTE price monitoring unit and GMRP/MSU/AAU/MOA/SG2000 Survey. Local market prices collected by EGTE are adjusted to

