Water Level Variability and Extremes

#### Andrew Gronewold, Ph.D., P.E. drewgron@umich.edu

University of Michigan School for Environment and Sustainability Department of Civil and Environmental Engineering Department of Earth and Environmental Sciences

Annual Great Lakes Conference, MSU-IWR March 2022









Recent changes in the water balance

3 Water Level Projections and Management

#### Final thoughts







2 Recent changes in the water balance

3 Water Level Projections and Management

#### 4 Final thoughts





#### Hong Do, Ph.D. (<u>CV</u>)(<u>Blog</u>)

Post Doctorate Fellow School for Environment and Sustainability University of Michigan



#### Yiwen Mei (CV) (GitHub)

Post Doctorate Fellow

School for Environment and Sustainability

University of Michigan



Helena Garcia School for Environment and Sustainability



Drew Pappas School of Information



James Polidori School for Environment and Sustainability



Princess Mutasa School for Environment and Sustainability



Sydney Swider

**Computer Science** 



Jennani Jayaram

Computational Cognitive Science and Computer Science



Alexander VanDeWeghe



Jenna Sherwin Civil Engineering



Lisi Pei



Joe Smith



Tim Hunter



Lindsay Fitzpatrick



**Eric Anderson** 



Steve Ruberg



Lacey Mason



Kaye LaFond



Steve Constant



Anne Clites



Greg Lang



Ayumi Manome



**Chuliang Xiao** 

Brent Lofgren



Ron Muzzi



















Year



VOL. 96 • NO. 6 • 1 APR 2015

![](_page_8_Picture_1.jpeg)

# GREAT LAKES WATER LEVELS RIP. R. H.

Suite of Software Analyzes Data on the Sphere

Dawn Spacecraft Orbits Dwarf Planet Ceres

The Social Contract Between Science and Society

![](_page_8_Picture_6.jpeg)

![](_page_9_Picture_1.jpeg)

![](_page_9_Picture_2.jpeg)

#### 2 Recent changes in the water balance

#### 3 Water Level Projections and Management

#### 4 Final thoughts

![](_page_9_Picture_6.jpeg)

Credit: David Babb, Penn State University

Continental Arctic (cA)

Maritime Polar (mP)

> Continental Polar (cP)

> > Maritime Polar (mP)

Continental Tropical (cT)

Maritime Tropical (mT)

Maritime Tropical (mT)

#### Runoff

- Overlake Precipitation
- Overlake Evaporation

- Flow Between Lakes
- Diversions

All values are averaged over the period 1950-2010 and are in thousands of cubic meters per second.

![](_page_11_Figure_6.jpeg)

#### Table 1

Annual Average Discharge (in Cubic Meters Per Second, cms) of North America's Eight Largest Rivers (Rounded to the Nearest Hundred)

| River        | Annual average discharge (cms) |
|--------------|--------------------------------|
| Mississippi  | 18,400                         |
| St. Lawrence | 10,800                         |
| Mackenzie    | 9,900                          |
| Columbia     | 7,500                          |
| Yukon        | 6,400                          |
| Fraser       | 3,600                          |
| Nelson       | 2,800                          |
| Koksoak      | 2,400                          |

![](_page_13_Figure_0.jpeg)

![](_page_14_Figure_0.jpeg)

Water balance anomalies (mm)

![](_page_15_Figure_0.jpeg)

![](_page_16_Figure_0.jpeg)

![](_page_17_Picture_0.jpeg)

![](_page_18_Picture_0.jpeg)

wavy polar vortex

cold air moves south

![](_page_18_Picture_3.jpeg)

![](_page_18_Picture_4.jpeg)

7 =1

![](_page_19_Figure_0.jpeg)

![](_page_20_Figure_0.jpeg)

![](_page_21_Figure_0.jpeg)

Gronewold et al (2020; GRL)

![](_page_22_Figure_1.jpeg)

![](_page_23_Picture_1.jpeg)

![](_page_23_Picture_2.jpeg)

![](_page_23_Picture_3.jpeg)

Water Level Projections and Management

#### 4 Final thoughts

![](_page_23_Picture_6.jpeg)

![](_page_24_Figure_0.jpeg)

![](_page_24_Figure_1.jpeg)

Adapted from Notaro et al (2015)

![](_page_25_Picture_0.jpeg)

(Antonio Perez / Chicago Tribune)

#### Groundwater running out in northeastern Illinois

FEB 25, 2021

![](_page_26_Picture_0.jpeg)

![](_page_26_Picture_1.jpeg)

"A savagely witty history of America's reckless depletion of its water resources" —Newsday

# DESERTION WEST AND ITS DISAPPEARING WATER

![](_page_27_Picture_2.jpeg)

## THE SOURCE

HOW RIVERS MADE AMERICA AND AMERICA REMADE ITS RIVERS

## MARTIN DOYLE

![](_page_29_Picture_0.jpeg)

![](_page_29_Picture_1.jpeg)

### FINALIST FOR THE PULITZER PRIZE

"It's a terrific book ... a terrific description of the importance, the scope, the dimensions, the impact of the Great Lakes." —Ira Flatow, NPR's Science Friday

REAT

PETER ANNIN

REVISED

AND UPDATED

the

G

![](_page_31_Picture_1.jpeg)

![](_page_31_Picture_2.jpeg)

- 2 Recent changes in the water balance
- 3 Water Level Projections and Management

#### Final thoughts

![](_page_31_Picture_6.jpeg)

#### Great Lakes are a massive and complex hydrologic system

![](_page_32_Picture_2.jpeg)

- Great Lakes are a massive and complex hydrologic system
- Continental-scale movement of air masses

![](_page_33_Picture_3.jpeg)

イロト イロト イヨト イヨト

- Great Lakes are a massive and complex hydrologic system
- Continental-scale movement of air masses
- Long-term water level forecasting is a major challenge

![](_page_34_Picture_4.jpeg)

Water Abundance Across the Great Lakes

#### Andrew Gronewold, Ph.D., P.E. drewgron@umich.edu

University of Michigan School for Environment and Sustainability Department of Civil and Environmental Engineering Department of Earth and Environmental Sciences

![](_page_35_Picture_3.jpeg)

(日) (同) (目) (日) (日)

![](_page_36_Picture_0.jpeg)

![](_page_37_Figure_0.jpeg)

| Name             | Country         | Surface area |                    | Volume             |                    |
|------------------|-----------------|--------------|--------------------|--------------------|--------------------|
|                  |                 | (km²)        | (mi <sup>2</sup> ) | (km <sup>3</sup> ) | (mi <sup>3</sup> ) |
| Michigan–Huron   | U.S. and Canada | 117,702      | 45,445             | 8,458              | 2,029              |
| Superior         | U.S. and Canada | 82,414       | 31,820             | 12,100             | 2,900              |
| Victoria         | Multiple        | 69,485       | 26,828             | 2,750              | 660                |
| Tanganyika       | Multiple        | 32,893       | 12,700             | 18,900             | 4,500              |
| Baikal           | Russia          | 31,500       | 12,200             | 23,600             | 5,700              |
| Great Bear Lake  | Canada          | 31,080       | 12,000             | 2,236              | 536                |
| Malawi           | Multiple        | 30,044       | 11,600             | 8,400              | 2,000              |
| Great Slave Lake | Canada          | 28,930       | 11,170             | 2,090              | 500                |
| Erie             | U.S. and Canada | 25,719       | 9,930              | 489                | 117                |
| Winnipeg         | Canada          | 23,553       | 9,094              | 283                | 68                 |
| Ontario          | U.S. and Canada | 19,477       | 7,520              | 1,639              | 393                |

Table: Water volume and surface area of Earth's largest (ranked by surface area) fresh surface waters.

From: Gronewold, Fortin, Lofgren, Clites, Stow, and Quinn (2013). Climatic Change.

![](_page_38_Picture_3.jpeg)

| Name             | Country         | Surface area       |                    | Volume             |                    |
|------------------|-----------------|--------------------|--------------------|--------------------|--------------------|
|                  |                 | (km <sup>2</sup> ) | (mi <sup>2</sup> ) | (km <sup>3</sup> ) | (mi <sup>3</sup> ) |
| Michigan–Huron   | U.S. and Canada | 117,702            | 45,445             | 8,458              | 2,029              |
| Superior         | U.S. and Canada | 82,414             | 31,820             | 12,100             | 2,900              |
| Victoria         | Multiple        | 69,485             | 26,828             | 2,750              | 660                |
| Tanganyika       | Multiple        | 32,893             | 12,700             | 18,900             | 4,500              |
| Baikal           | Russia          | 31,500             | 12,200             | 23,600             | 5,700              |
| Great Bear Lake  | Canada          | 31,080             | 12,000             | 2,236              | 536                |
| Malawi           | Multiple        | 30,044             | 11,600             | 8,400              | 2,000              |
| Great Slave Lake | Canada          | 28,930             | 11,170             | 2,090              | 500                |
| Erie             | U.S. and Canada | 25,719             | 9,930              | 489                | 117                |
| Winnipeg         | Canada          | 23,553             | 9,094              | 283                | 68                 |
| Ontario          | U.S. and Canada | 19,477             | 7,520              | 1,639              | 393                |

Table: Water volume and surface area of Earth's largest (ranked by surface area) fresh surface waters.

From: Gronewold, Fortin, Lofgren, Clites, Stow, and Quinn (2013). Climatic Change.

![](_page_39_Picture_3.jpeg)

| Name             | Country         | Surface area       |                    | Volume             |                    |
|------------------|-----------------|--------------------|--------------------|--------------------|--------------------|
|                  |                 | (km <sup>2</sup> ) | (mi <sup>2</sup> ) | (km <sup>3</sup> ) | (mi <sup>3</sup> ) |
| Michigan–Huron   | U.S. and Canada | 117,702            | 45,445             | 8,458              | 2,029              |
| Superior         | U.S. and Canada | 82,414             | 31,820             | 12,100             | 2,900              |
| Victoria         | Multiple        | 69,485             | 26,828             | 2,750              | 660                |
| Tanganyika       | Multiple        | 32,893             | 12,700             | 18,900             | 4,500              |
| Baikal           | Russia          | 31,500             | 12,200             | 23,600             | 5,700              |
| Great Bear Lake  | Canada          | 31,080             | 12,000             | 2,236              | 536                |
| Malawi           | Multiple        | 30,044             | 11,600             | 8,400              | 2,000              |
| Great Slave Lake | Canada          | 28,930             | 11,170             | 2,090              | 500                |
| Erie             | U.S. and Canada | 25,719             | 9,930              | 489                | 117                |
| Winnipeg         | Canada          | 23,553             | 9,094              | 283                | 68                 |
| Ontario          | U.S. and Canada | 19,477             | 7,520              | 1,639              | 393                |

Table: Water volume and surface area of Earth's largest (ranked by surface area) fresh surface waters.

From: Gronewold, Fortin, Lofgren, Clites, Stow, and Quinn (2013). Climatic Change.

![](_page_40_Picture_3.jpeg)

## DNR approves water plan

The Wisconsin Department of Natural Resources said Tuesday it will forward the City of Waukesha's request for Lake Michigan water to the Conference of Great Lakes Governors. Waukesha's application to purchase lake water from Oak Creek needs the unanimous approval of the Great Lakes governors.

![](_page_41_Figure_2.jpeg)

Source: City of Waukesha water utility

Journal Sentinel

Calculated Soil Moisture Ranking Percentile AUG 24, 2021

![](_page_42_Figure_1.jpeg)

![](_page_43_Picture_0.jpeg)