# SMART ON-FARM RESEARCH REPORT

## 2017-Part 1

EKVNKENMULH' WI bEKWILL 50 bVID NZ BOSLVCE NON-BKOELL

MICHIGAN SOYBEAN COMMITTEE, PO BOX 287, FRANKENMUTH, MI 48734



Mark Seamon, MSPC Research Coordinator

#### CONTENTS

| 2017 SMaRT On-farm Research Report Introduction 2      |
|--------------------------------------------------------|
| Map of Trial Locations 3                               |
| 2014 to 2016 Residual Broadcast Gypsum Trial           |
| 2015 to 2017 Planting Rate Trial6                      |
| 2016 and 2017 ILeVO Seed Treatment Trial 12            |
| In-furrow Calcium Fertilizer Trial                     |
| Complete Seed Treatment Trials                         |
| 2016 and 2017 Field Rolling Trial 18                   |
| Foliar Fungicide and Insecticide Tank Mixture Trial 20 |
| White Mold Foliar Fungicide Comparison Trial           |
| 2016 and 2017 Prescription Foliar Fertilizer Trial 24  |
| Summary of the MI Soybean Benchmarking Survey 28       |
| Introduction to Experimental Design,                   |
| SMaRT 2018 Cooperator Form                             |

THANK YOU to the farmer cooperators for contributing their land, equipment, and time during the busy planting and harvest seasons to help improve Michigan soybean production.

For more information on participating in a 2018 SMaRT project, see page 31. The SMaRT On-farm Research Program, which just completed its seventh season, is made possible by the checkoff investment of Michigan soybean growers. This year, 48 producers around the state conducted on-farm research trials within 9 projects. In this publication you'll find the results from 56 individual trial locations. The research projects were developed with producer input and represent some of the most challenging production issues confronting producers. Most of the projects were conducted at multiple locations and, in some cases, across several years improving the reliability of the results.

Agronomic and economic data is presented for each treatment. The projected USDA 2017-18 average soybean price of \$9.20 per bushel and average 2017 prices for the product(s) and application costs associated with the treatments were used to determine the breakeven yields presented in the graphs.

Conducting these trials would not be possible without strong partnerships. One example is the unique collaboration between Michigan State University Extension (MSUE) and the Michigan Soybean Promotion Committee (MSPC) to jointly fund Mike Staton, MSUE state-wide soybean educator project coordinator. This and SMaRT program is also not possible without the efforts of Ned Birkey, in southeast MI, and Dan Rajzer, in southwest MI, with whom MSPC contracts to implement SMaRT trials and who are essential to this project's success. Ty Bodeis, MSPC soybean production specialist, took final plant stand counts, collected soil samples for soybean cyst nematode testing and nutrient analysis, and other valuable information presented in this report. We also want to thank MSU Extension educators, Martin Nagelkirk and James Dedecker, for their efforts in making this research possible.

Dr. Arnold Saxton, Professor Emeritus, University of Tennessee, provided the SAS statistical procedure used for analyzing the 2017 trial results and provided valuable input regarding experimental design and statistical analysis.



### 2017 SMaRT Trial Locations



### 2014 to 2016 Residual Broadcast Gypsum Trial

**Purpose:** Interest in the use of gypsum is increasing in Michigan. Gypsum is an excellent source of calcium and sulfur, both of which are essential crop nutrients. Calcium deficiency symptoms in field crops have never been identified in Michigan. However, sulfur can be low in coarse-textured soils low in organic matter. The purpose of this trial was to evaluate the short-term and long-term effects of broadcast gypsum on crop yields in Michigan rotations.

Procedure: To determine the immediate effect of broadcast gypsum on soybean yields, a broadcast gypsum application was compared to an untreated control at one location in 2014, 10 locations in 2015 and one location in 2016. To determine the residual effects on soybean yields, the gypsum was applied prior to corn at 4 sites (Sanilac 14, Saginaw 15, Monroe 16-1 and Monroe 16-2). The gypsum was applied in the spring at all locations except the Sanilac 14 site where it was applied following wheat harvest in 2014. The gypsum application rate for each location was based on the soil's cation exchange capacity (CEC). One half ton per acre was applied when the CEC was below 10 meg/100g, one ton per acre was applied at CECs between 10 and 15 meg/100g and two tons per acre were applied when the CEC exceeded 15 meg/100g. Baseline soil samples were collected from 11 sites (table 1). Treated and untreated strips were geo-referenced at 11 sites so we could evaluate the residual effects of gypsum on crop yields and soil infiltration rates.

**Results:** The immediate effect of a broadcast gypsum application on soybean yields has been summarized in the 2016 SMaRT On-Farm Research Report which is available online at http://michigansoybean.org/checkoff-at-work/production/. The residual effects of gypsum on crop yields and soil infiltration rates are presented in tables 2 and 3. The 2015 gypsum applications improved wheat yield by 8.2 bushels per acre at one site and corn yield by 9.1 bushels per acre at another site in 2016 (table 2). The 2016 gypsum applications in 2017. The 2015 and 2016 gypsum applications in 2017. The 2015 and 2016 gypsum applications did not increase soybean yields in two locations in 2017. The 2015 and 2016 gypsum applications did not improve soil infiltration rates at any of the 11 locations in 2016 and 2017 (table 3).

We want to thank Gypsoil for providing and delivering the gypsum for the 2015 and 2016 trials.



Lime spreader

### Gypsum provides both calcium and sulfur

to the soil but consistent yield benefits have not been realized in three years of trials

| Location        | Organic<br>Matter<br>(%) | Magnesium<br>(ppm) | Calcium<br>(ppm) | CEC<br>(meq/100g) | Sulfur<br>(ppm) | Magnesium<br>Saturation<br>(%) | Calcium<br>Saturation<br>(%) |  |  |  |  |
|-----------------|--------------------------|--------------------|------------------|-------------------|-----------------|--------------------------------|------------------------------|--|--|--|--|
| Cass 15-1       | 15.9                     | 165                | 2600             | 24.4              | 13              | 5.6                            | 53.3                         |  |  |  |  |
| Clinton 15      | 3.4                      | 310                | 2100             | 13.4              | 15              | 19.2                           | 78.1                         |  |  |  |  |
| Monroe 15-3     | 4.1                      | 365                | 2150             | 14.2              | 8               | 21.5                           | 75.9                         |  |  |  |  |
| Monroe 15-2     | 2.6                      | 205                | 1500             | 10.8              | 13              | 15.9                           | 69.7                         |  |  |  |  |
| Monroe 15-1     | 3.2                      | 215                | 1850             | 11.4              | 11              | 15.8                           | 81.4                         |  |  |  |  |
| Hillsdale 15    | 2.7                      | 220                | 1350             | 10.1              | 7               | 18.1                           | 66.7                         |  |  |  |  |
| Branch 15-2     | 2.2                      | 145                | 800              | 6.8               | 8               | 17.9                           | 59.1                         |  |  |  |  |
| Presque Isle 14 |                          | 87                 | 822              | 5.1               |                 | 14.3                           | 81.3                         |  |  |  |  |
| Presque Isle 15 | 2.0                      | 170                | 1750             | 10.5              | 8               | 13.5                           | 83.6                         |  |  |  |  |
| Washtenaw 16    |                          | 206                | 1032             | 9.9               |                 | 24.2                           | 71.4                         |  |  |  |  |
| Monroe 16-1     |                          | 344                | 2586             | 17.5              |                 | 17.6                           | 79.3                         |  |  |  |  |
| Monroe 16-2     | 2.8                      | 212                | 1275             | 10.1              | 9               | 17.9                           | 64.1                         |  |  |  |  |

Table 1. Baseline soil test levels for 11 of the broadcast gypsum trials conducted in 2014, 2015 and 2016

Table 2. Residual effects of a single broadcast gypsum application on crop yields in 2016 and 2017

|             | Gypsum<br>application |                  | Untreated | Broadcast |          |
|-------------|-----------------------|------------------|-----------|-----------|----------|
| Location    | timing                | Crop             | control   | gypsum    | LSD 0.10 |
|             |                       |                  | Yield     | (bu/ac)   |          |
| Sanilac 14  | Summer 2014           | Soybeans in 2016 | 65.8      | 64.8      | 4.4      |
| Monroe 15-2 | Spring 2015           | Soybeans in 2016 | 44.7      | 45.8      | 4.1      |
| Monroe 16-1 | Spring 2016           | Soybeans in 2017 | 39.7      | 43.0      | 5.4      |
| Monroe 16-2 | Spring 2016           | Soybeans in 2017 | 70.6      | 70.0      | 1.2      |
| Average     |                       | Soybean          | 55.2      | 55.9      | 1.6      |
| Monroe 15-3 | Spring 2015           | Wheat in 2016    | 81.0      | 84.4      | 10.4     |
| Monroe 15-1 | Spring 2015           | Wheat in 2016    | 81.9 b    | 90.1 a    | 7.2      |
| Average     |                       | Wheat            | 81.5 b    | 87.3 a    | 5.0      |
| Clinton 15  | Spring 2015           | Corn in 2016     | 187.9     | 185.2     | 7.0      |
| Cass 15-2   | Spring 2015           | Corn in 2016     | 174.8 b   | 183.9 a   | 3.4      |
| Cass 15-1   | Spring 2015           | Corn in 2016     | 181.7     | 181.2     | 18.4     |
| Average     |                       | Corn             | 181.9     | 183.5     | 5.2      |

| Table 3. | Residual | effects ( | of a | sinale    | broadcast | avpsum  | application | on soil  | infiltration     | rates i | n 2016 | and | 2017.    |
|----------|----------|-----------|------|-----------|-----------|---------|-------------|----------|------------------|---------|--------|-----|----------|
| rabie bi | residuar | chiecco . |      | a onligic | broadcase | g,pourr | apprication | 011 0011 | in in the action | races i |        | ana | LO 1 / I |

| Location     | Gypsum<br>application timing | Infiltration test<br>timing | Untreated control | Broadcast gypsum | LSD and |
|--------------|------------------------------|-----------------------------|-------------------|------------------|---------|
|              |                              |                             | *Infiltration     | rate (minutes)   | 0.10    |
| Monroe 15-3  | Spring 2015                  | Spring 2016                 | 9                 | 22               | 21      |
| Monroe 15-1  | Spring 2015                  | Spring 2016                 | 2                 | 18               | 38      |
| Hillsdale 15 | Spring 2015                  | Spring 2016                 | 2                 | 2                | 1       |
| Branch 15-2  | Spring 2015                  | Spring 2016                 | 9                 | 6                | 8       |
| Cass 15-2    | Spring 2015                  | Spring 2016                 | 1                 | 2                | 1       |
| Monroe 15-2  | Spring 2015                  | Spring 2016                 | 4                 | 4                | 3       |
| Clinton 15   | Spring 2015                  | Spring 2016                 | 16                | 27               | 40      |
| Sanilac 14   | Summer 2014                  | Spring 2016                 | 17                | 33               | 62      |
| Saginaw 15   | Spring 2015                  | Spring 2016                 | 7                 | 6                | 4       |
| Monroe 16-1  | Spring 2016                  | Spring 2017                 | 6                 | 3                | 4       |
| Monroe 16-2  | Spring 2016                  | Spring 2017                 | 7                 | 5                | 5       |
| Average      | ALL VIE TELEVIER             | A NIKI DE LEVEL             | 10                | 11               | 6       |

\*Time required for one inch of water to infiltrate into a saturated soil

### 2015, 2016 and 2017 Planting Rate Trial

**Purpose:** Soybean planting rates were the highest ranking topic identified by soybean producers for evaluation in the SMaRT trials. The producers were interested in evaluating the effect of reduced planting rates on soybean yields and income. There are two main factors driving the increased interest in reducing soybean planting rates – seed cost and white mold. The purpose of this trial was to evaluate how reducing planting rates will affect soybean yield and income.

**Procedure:** Eleven planting rate trials were conducted each year from 2015 to 2017. Four target planting rates (80,000, 100,000, 130,000 and 160,000 seeds per acre) were compared at all sites except Sanilac 3 which used the three highest rates, in 2015. Stand counts were taken to determine actual final plant stands at each location.

**Results:** The planting rate trials produced mixed results in 2015. At three sites, the 160,000 planting rate produced the highest yield. However, it also produced the lowest yield at two other locations. The lowest three planting rates each produced the highest yield at three trials. When all the locations were combined and analyzed, the yield for the 80,000 planting rate was 1.8 bushels per acre lower than the 100,000, 130,000 and 160,000 planting rates. However, there was no difference in the yields produced by the highest three planting rates.

The more challenging weather and soil conditions occurring in 2016 an 2017 favored the higher planting rates. In 2016, the 160,000 planting rate beat the 80,000 rate at six locations, the 100,000 rate at three locations and the 130,000 at one location. The 130,000 rate beat the 80,000 rate at six sites, the 100,000 rate at two sites and the 160,000 rate at one site. In 2017, the 160,000 planting rate beat the 80,000 rate at seven locations, the 100,000 rate at two locations and never beat the 130,000 rate. The 130,000 rate beat the 80,000 rate at three sites and the 100,000 rate at two sites. When all the locations for both 2016 and 2017 were combined and analyzed by year, the two highest planting rates produced identical yields and they yielded 1.3 bushels per acre higher than the 100,000 rate and 2.7 bushels per acre more than the 80,000 rate.

When all 33 sites (2015, 2016 and 2017) were combined and analyzed, the highest two planting rates produced similar yields and beat the 100,000 rate by 0.8 of a bushel per acre and the 80,000 rate by 2.3 bushels per acre.

Projected market prices and conservative seed costs were used to determine the income (gross income – seed cost) produced by the four planting rates. In 2015, the lowest two planting rates generated more income per acre than the higher two planting rates. In 2016 and 2017, the lowest three planting rates were more profitable than the highest planting rate.

Most of the trials were conducted in the Thumb area and further research is needed to determine how lowering planting rates will affect soybean yield and income across a wide range of tillage systems, planting systems, soil types and weather conditions.



Typical branching on a plant from the lowest two planting rates.

| <b>715</b> Report and seed a california of spacing, planting date, planting depart and seed a california in 2015 |                    |                     |         |          |          |                         |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|---------|----------|----------|-------------------------|--|--|--|--|
|                                                                                                                  | Tillage operations |                     | Row     | Planting | Planting |                         |  |  |  |  |
| Location                                                                                                         | (fall/spring)      | Planter/drill       | spacing | date     | depth    | Seed treatment          |  |  |  |  |
| Cass 1                                                                                                           | No-till            | JD 750              | 15″     | May 13   | 1″       | PPST FST/IST            |  |  |  |  |
| St. Joseph                                                                                                       | Strip tillage      | Monosem NG4         | Twin 8" | April 29 | 1.5″     | PPST FST/IST            |  |  |  |  |
| Tuscola                                                                                                          | No-till            | JD 1790             | 15″     | May 21   | 1.25″    | PPST FST/IST            |  |  |  |  |
| Sanilac 1                                                                                                        | CP/FC (2X)         | Case IH 1250        | 30″     | May 21   | 1.75″    | Poncho/VOTiVO/Acceleron |  |  |  |  |
| Sanilac 2                                                                                                        | CP/FC              | John Deere 1790     | 15″     | May 5    | 1.25″    | Poncho/VOTiVO/Acceleron |  |  |  |  |
| Berrien                                                                                                          | D/D                | JD 1770             | 30″     | May 22   | 1″       | Cruiser Maxx            |  |  |  |  |
| Cass 2                                                                                                           | DR/FC              | JD 1790             | 15″     | May 14   | 1″       | PPST FST/IST            |  |  |  |  |
| Monroe                                                                                                           | CP/FC              | JD 1780             | 15″     | May 9    | 1″       | Tag Team                |  |  |  |  |
| Ingham                                                                                                           | Strip till         | Great Plains YP825A | Twin 7" | May 13   | 1.5″     | Poncho/VOTiVO/Acceleron |  |  |  |  |
| Sanilac 3                                                                                                        | DR/FC              | JD DB60             | 20″     | May1     | 1.25″    | PPST FST/IST            |  |  |  |  |
| Fairgrove                                                                                                        | CP/FC (2X)         | JD 7200/Kinze units | 28″     | May 19   | 1″       | Clariva Complete Beans  |  |  |  |  |

15 Table 1. Tillage, planting equipment, row spacing, planting date, planting depth and seed treatment in 2015

CP = chisel plow, FC = field cultivator, D = disc, VT = vertical tillage and DR = disc ripper

| 201 | 6 | Table 2. Tillage, | planting equipment, | , row spacing, CEC, planting | g date, planting depth | and seed treatment in 2016 |
|-----|---|-------------------|---------------------|------------------------------|------------------------|----------------------------|
|-----|---|-------------------|---------------------|------------------------------|------------------------|----------------------------|

|           | Tillage operations |               | Row     |      | Planting | Planting |                         |
|-----------|--------------------|---------------|---------|------|----------|----------|-------------------------|
| Location  | (fall/spring)      | Planter/drill | spacing | CEC  | date     | depth    | Seed treatment          |
| Tuscola 1 | No-till            | JD 1790       | 15″     | 9.6  | May 19   | 1.25″    | Pioneer PPST FST/IST    |
| Sanilac 1 | DR/FC              | JD DB44       | 22″     | 8.7  | May 21   | 1.5″     | Seed Shield + First Up  |
| Sanilac 2 | DR/VT (2x)         | JD 1780       | 20″     | 7.9  | May 7    | 1.5″     | Insecticide + fungicide |
| Tuscola 2 | CP/FC              | JD 1790       | 15″     | 16   | May 9    | 1.5″     | Cruiser Maxx            |
| Tuscola 3 | CP/FC              | JD 1790       | 15″     | 6    | May 9    | 1.5″     | Cruiser Maxx            |
| Sanilac 3 | CP/FC              | GP 35-3000    | 24″     | 9.4  | May 20   | 1.25″    | None                    |
| Cass      | CP/FC              | JD 1790       | 15″     | 6.2  | May 23   | 1″       | Pioneer PPST FST/IST    |
| Calhoun   | No-till            | JD 1770       | 30″     | 5.1  | May 16   | 1″       | None                    |
| Barry     | CP/D, packer       | Case IH 1250  | 30″     | 5-6  | June 2   | 1.75″    | Vault                   |
| Ionia     | DR/FC              | JD 1990 CCS   | 15″     | 6.6  | May 19   | 1″       | Insecticide + Fungicide |
| Ingham    | Strip-till         | GP YP825      | Twin 7" | 21.9 | May 25   | 1.5″     | Poncho/VOTiVO/Acceleron |

CP = chisel plow, FC = field cultivator, D = disc, VT = vertical tillage and DR = disc ripper

| 201 | 17 | Table 3. | Tillage, | planting | equipment, | , row spacing | (CEC), | planting d | late, p | planting | depth | and s | seed | treatment | in 20 | 017 |
|-----|----|----------|----------|----------|------------|---------------|--------|------------|---------|----------|-------|-------|------|-----------|-------|-----|
|-----|----|----------|----------|----------|------------|---------------|--------|------------|---------|----------|-------|-------|------|-----------|-------|-----|

|            | Tillage operations  |               | Row     |          | Planting | Planting |                        |
|------------|---------------------|---------------|---------|----------|----------|----------|------------------------|
| Location   | (fall/spring)       | Planter/drill | spacing | CEC      | date     | depth    | Seed treatment         |
| Sanilac 1  | DR/FC               | JD DB44       | 22″     | 10.5     | May 19   | 1.5″     | Seed Shield + First up |
| Sanilac 2  | DR/VT (2X)          | JD 1780       | 20″     | 10.0     | May 15   | 1.5″     | Pioneer PPST FST/IST   |
| Tuscola 1  | VT/none             | JD 1790       | 15″     | 6.7      | May 23   | 1.25″    | Pioneer PPST FST/IST   |
| Sanilac 3  | VT/VT               | Kinze 3500    | 30″     |          | May 24   | 1.0″     | Seed Shield Beans      |
| Sanilac 4  | CP/FC               | IH 1250       | 30″     | 9.0      | May 31   | 1.75″    | Seed Shield Beans      |
| Saginaw 1  | CP/FC               | JD 7100       | 15″     | 7.5      | June 7   | 1.5″     | Pioneer PPST FST/IST   |
| Saginaw 2  | CP/FC               | JD7100        | 15″     | 6.0      | June 7   | 1.5″     | Pioneer PPST FST/IST   |
| Shiawassee | No-till             | JD 1990       | 15″     | 15       | May 15   | 1.5″     | Pioneer PPST FST/IST   |
| Tuscola 2  | No-till/wheat & Rye | JD 1790       | 15″     | 8.8      | May 15   | 1.25″    | Cruiser Maxx           |
| Calhoun    | No-till             | JD 1770       | 30″     | 1. 4. 17 | May 8    | 1″       | None                   |
| Berrien    | D/D                 | JD 7000       | 30″     | 37       | May 22   | 1.5″     | Cruiser Maxx           |

CP = chisel plow, FC = field cultivator, D = disc, VT = vertical tillage and DR = disc ripper

# Planting Rate Trial continued 2015 Table 4. Target planting rates and actual planting rates and actua

Table 4. Target planting rates and actual plant stands in 2015

| And the second second   |        | Target planting rate (seeds/ac) |                   |         |  |  |  |  |  |  |
|-------------------------|--------|---------------------------------|-------------------|---------|--|--|--|--|--|--|
| Location                | 80,000 | 100,000                         | 130,000           | 160,000 |  |  |  |  |  |  |
|                         |        | Actual plant sl                 | tands (plants/ac) |         |  |  |  |  |  |  |
| Cass 1                  | 79,100 | 85,100                          | 122,900           | 133,100 |  |  |  |  |  |  |
| St. Joseph              | 69,800 | 82,600                          | 110,100           | 138,100 |  |  |  |  |  |  |
| Tuscola                 | 54,500 | 80,300                          | 100,800           | 126,600 |  |  |  |  |  |  |
| Sanilac 1               | 63,200 | 79,400                          | 113,200           | 138,400 |  |  |  |  |  |  |
| Sanilac 2               | 71,600 | 90,500                          | 117,300           | 136,200 |  |  |  |  |  |  |
| Berrien                 | 78,500 | 97,400                          | 129,500           | 150,600 |  |  |  |  |  |  |
| Cass 2                  | 78,300 | 91,200                          | 123,000           | 150,000 |  |  |  |  |  |  |
| Monroe                  | 51,500 | 71,000                          | 92,300            | 105,800 |  |  |  |  |  |  |
| Ingham                  | 79,900 | 100,200                         | 136,500           | 180,000 |  |  |  |  |  |  |
| Sanilac 3               |        | 98,800                          | 116,700           | 143,900 |  |  |  |  |  |  |
| Fairgrove               | 73,300 | 92,300                          | 121,700           | 151,300 |  |  |  |  |  |  |
| Average (all locations) | 70,000 | 88,100                          | 116,700           | 141,300 |  |  |  |  |  |  |
|                         |        | Average sta                     | ind loss (%)      |         |  |  |  |  |  |  |
|                         | 13     | 12                              | 10                | 12      |  |  |  |  |  |  |

2016

Table 5. Target planting rates and actual plant stands in 2016

|                         | Target planting rate (seeds/ac) |                                 |             |         |  |  |  |  |  |
|-------------------------|---------------------------------|---------------------------------|-------------|---------|--|--|--|--|--|
| Location                | 80,000                          | 100,000                         | 130,000     | 160,000 |  |  |  |  |  |
|                         |                                 | Actual plant stands (plants/ac) |             |         |  |  |  |  |  |
| Tuscola 1               | 66,000                          | 84,900                          | 99,700      | 128,200 |  |  |  |  |  |
| Sanilac 1               | 77,100                          | 93,600                          | 120,700     | 149,100 |  |  |  |  |  |
| Sanilac 2               | 59,200                          | 72,700                          | 90,700      | 124,900 |  |  |  |  |  |
| Tuscola 2               | 66,600                          | 76,700                          | 98,300      | 118,300 |  |  |  |  |  |
| Tuscola 3               | 65,000                          | 80,000                          | 107,700     | 122,600 |  |  |  |  |  |
| Sanilac 3               | 59,800                          | 78,200                          | 117,700     | 150,900 |  |  |  |  |  |
| Cass                    | 75,300                          | 91,900                          | 117,000     | 142,300 |  |  |  |  |  |
| Calhoun                 | 57,300                          | 74,500                          | 86,800      | 115800  |  |  |  |  |  |
| Barry                   | 59,000                          | 77,200                          | 106,000     | 130,000 |  |  |  |  |  |
| Ionia                   | 69,900                          | 87,500                          | 107,200     | 128,200 |  |  |  |  |  |
| Ingham                  | 79,400                          | 87,500                          | 117,700     | 138,200 |  |  |  |  |  |
| Average (all locations) | 66,800                          | 82,200                          | 106,300     | 131,700 |  |  |  |  |  |
|                         |                                 | Average sta                     | nd loss (%) |         |  |  |  |  |  |
|                         | 17                              | 18                              | 18          | 18      |  |  |  |  |  |

<u>2017</u>

#### Table 6. Target planting rates and actual plant stands in 2017

|                         | Target planting rate (seeds/ac) |         |         |         |  |  |  |
|-------------------------|---------------------------------|---------|---------|---------|--|--|--|
| Location                | 80,000                          | 100,000 | 130,000 | 160,000 |  |  |  |
|                         | Actual plant stands (plants/ac) |         |         |         |  |  |  |
| Sanilac 1               | 71,200                          | 86,400  | 101,300 | 123,100 |  |  |  |
| Sanilac 2               | 66,900                          | 78,900  | 101,200 | 124,400 |  |  |  |
| Tuscola 1               | 65,000                          | 84,400  | 97,600  | 117,600 |  |  |  |
| Sanilac 3               | 72,400                          | 88,000  | 107,800 | 131,800 |  |  |  |
| Sanilac 4               | 73,000                          | 96,900  | 124,700 | 155,400 |  |  |  |
| Saginaw 1               | 50,500                          | 61,300  | 82,300  | 89,200  |  |  |  |
| Saginaw 2               | 44,000                          | 61,300  | 78,400  | 92,500  |  |  |  |
| Shiawassee              | 61,600                          | 78,800  | 102,100 | 131,300 |  |  |  |
| Tuscola 2               | 73,900                          | 88,700  | 112,200 | 132,900 |  |  |  |
| Calhoun                 | 59,600                          | 71,200  | 88,500  | 109,300 |  |  |  |
| Berrien                 | 69,800                          | 86,700  | 108,400 | 126,500 |  |  |  |
| Average (all locations) | 64,400                          | 80,200  | 100,400 | 121,300 |  |  |  |
|                         | Average stand loss (%)          |         |         |         |  |  |  |
|                         | 20                              | 20      | 23      | 24      |  |  |  |
|                         |                                 |         |         |         |  |  |  |

2015

Table 7. Effect of four planting rates on soybean yield and income in 2015

| Location       | 80,000         | 100,000  | 130,000    | 160,000 | LSD <sub>0.10</sub> |  |
|----------------|----------------|----------|------------|---------|---------------------|--|
|                |                | Yield (b | ushels/ac) |         |                     |  |
| Cass 1         | 48.9 c         | 51.1 bc  | 53.3 ab    | 54.5 a  | 2.4                 |  |
| St. Joseph     | 63.8           | 63.9     | 64.0       | 64.7    | 1.1                 |  |
| Tuscola        | 60.1 ab        | 60.1 ab  | 61.5 a     | 59.1 b  | 2.2                 |  |
| Sanilac 1      | 52.7           | 56.2     | 54.2       | 53.0    | 5.1                 |  |
| Sanilac 2      | 63.2 a         | 61.1 b   | 59.8 b     | 57.9 c  | 1.7                 |  |
| Berrien        | 72.1 b         | 75.0 ab  | 74.5 ab    | 75.9 a  | 3.7                 |  |
| Cass 2         | 72.0           | 73.1     | 71.6       | 72.4    | 1.6                 |  |
| Monroe         | 38.9 b         | 47.3 ab  | 45.6 ab    | 49.8 a  | 9.7                 |  |
| Ingham         | 46.5           | 46.3     | 45.6       | 47.6    | 5.6                 |  |
| Sanilac 3      |                | 62.4 a   | 59.8 b     | 58.8 c  | 1.0                 |  |
| Fairgrove      | 65.8           | 66.9     | 69.0       | 66.6    | 4.0                 |  |
| Average yield  | 58.4 b         | 60.1 a   | 59.9 a     | 60.2 a  | 1.4                 |  |
|                | Income (\$/ac) |          |            |         |                     |  |
| Average income | \$500          | \$507    | \$492      | \$482   |                     |  |

Seed cost = \$60 per 140,000 seed unit

2016

Table 8. Effect of four planting rates on soybean yield and income in 2016

| Location       | 80,000  | 100,000  | 130,000    | 160,000 | LSD <sub>0.10</sub> |
|----------------|---------|----------|------------|---------|---------------------|
|                |         | Yield (b | ushels/ac) |         |                     |
| Tuscola 1      | 67.2 b  | 66.6 b   | 69.7 a     | 71.7 a  | 2.5                 |
| Sanilac 1      | 80.3    | 80.5     | 80.7       | 79.0    | 2.4                 |
| Sanilac 2      | 75.0 b  | 76.9 b   | 76.9 b     | 79.3 a  | 2.1                 |
| Tuscola 2      | 78.0 b  | 79.7 ab  | 81.2 a     | 80.7 a  | 2.6                 |
| Tuscola 3      | 71.9 c  | 74.7 b   | 76.4 ab    | 77.7 a  | 2.6                 |
| Sanilac 3      | 61.6 b  | 66.7 a   | 68.1 a     | 69.2 a  | 3.2                 |
| Cass           | 75.6 ab | 75.3 ab  | 76.2 a     | 74.5 b  | 1.5                 |
| Calhoun        | 62 b    | 63.3 b   | 67.8 a     | 64.8 ab | 4.2                 |
| Barry          | 55.0    | 56.1     | 55.3       | 56.8    | 3.6                 |
| Ionia          | 77.0 c  | 78.3 bc  | 78.9 ab    | 80.1 a  | 1.4                 |
| Ingham         | 53.0    | 53.0     | 54.7       | 51.4    | 5.9                 |
| Average yield  | 68.7 c  | 70.1 b   | 71.4 a     | 71.4 a  | 0.9                 |
|                |         | Incom    | ne (\$/ac) |         |                     |
| Average income | \$598   | \$602    | \$601      | \$588   |                     |

Seed cost = \$60 per 140,000 seed unit

### 2017

Table 9. Effect of four planting rates on soybean yield and income in 2017

| Location       | 80,000  | 100,000            | 130,000 | 160,000 | LSD <sub>0.10</sub> |  |  |  |  |
|----------------|---------|--------------------|---------|---------|---------------------|--|--|--|--|
|                |         | Yield (bushels/ac) |         |         |                     |  |  |  |  |
| Sanilac 1      | 61.0 bc | 60.9 c             | 62.1 ab | 62.2 a  | 1.1                 |  |  |  |  |
| Sanilac 2      | 69.0 ab | 69.9 a             | 68.9 ab | 67.6 b  | 1.7                 |  |  |  |  |
| Tuscola 1      | 50.8 ab | 50.1 b             | 53.9 a  | 52.5 ab | 3.4                 |  |  |  |  |
| Sanilac 3      | 54.3 b  | 56.7 ab            | 55.7 ab | 57.3 a  | 2.8                 |  |  |  |  |
| Sanilac 4      | 36.8 b  | 39.8 ab            | 41.4 a  | 42.9 a  | 3.8                 |  |  |  |  |
| Saginaw 1      | 39.5    | 40.1               | 42.1    | 41.6    | 4.3                 |  |  |  |  |
| Saginaw 2      | 38.9 b  | 40.5 ab            | 41.0 ab | 42.5 a  | 3.4                 |  |  |  |  |
| Shiawassee     | 42.5 c  | 44.2 bc            | 46.8 a  | 45.8 ab | 1.9                 |  |  |  |  |
| Tuscola 2      | 56.4 c  | 59.4 b             | 61.5 ab | 63.6 a  | 2.7                 |  |  |  |  |
| Calhoun        | 44.0 b  | 45.8 ab            | 46.0 ab | 46.4 a  | 2.2                 |  |  |  |  |
| Berrien        | 64.2    | 65.2               | 66.4    | 65.2    | 4.3                 |  |  |  |  |
| Average yield  | 50.7 c  | 52.0 b             | 53.3 a  | 53.4 a  | 0.9                 |  |  |  |  |
| Income (\$/ac) |         |                    |         |         |                     |  |  |  |  |
| Average income | \$429   | \$432              | \$431   | \$418   | ANG ANY ANY         |  |  |  |  |

Seed cost = \$64 per 140,000 seed unit

### Planting Rate Trial continued



Figure 1. Effect of four planting rates on soybean yields at 11 locations in 2015





Figure 3. Effect of four planting rates on soybean yields at 11 locations in 2017





Figure 4. Planting rate effects on soybean yield and income in 2015, 2016 and 2017

The SMaRT project has conducted 33 on-farm replicated soybean planting rate trials from 2015 to 2017. The trials have been conducted over a range of growing conditions. Planting conditions were nearly ideal in 2015 but were more challenging in 2016 and 2017. The growing conditions in 2016 produced a record soybean yield in Michigan, whereas the excessive early rainfall and the lack of rain in August and September caused significant yield reductions in many areas of the state in 2017.

Michigan soybean producers can use the results from these trials in several ways. The most obvious way is to select the most profitable planting rates for their farms. We want to be clear that we are not recommending that Michigan soybean producers plant 80,000 or even 100,000 seeds per acre. However, it is very impressive how consistently well the 130,000 planting rate performed across the 33 trials and three growing seasons. It produced higher yields than the 160,000 rate at four locations and produced a lower yield than the 160,000 rate in only one trial.

The information can also help Michigan soybean producers make replanting decisions. The 80,000 planting rate results show that some very low plant stands can produce surprisingly high yields.

### 2016 and 2017 ILeVO<sup>®</sup> Seed Treatment Trial

**Purpose:** Soybean producers have identified seed treatments as a high priority for evaluation in SMaRT on-farm research trials. ILeVO was selected because Sudden Death Syndrome (SDS) is increasing in Michigan. The purpose of this trial was to evaluate the effect of ILeVO seed treatment on soybean yields and income in fields having a history of (SDS).

**Procedure:** This trial compared two treatments (a complete seed treatment *without* ILeVO vs. the same complete seed treatment *with* ILeVO). Seven trials were conducted in 2016 and four trials were conducted in 2017. The cooperating producers worked closely with their seed dealers to ensure that all seed planted in each trial was the same variety and seed lot. All seed treatments were applied by local seed dealers and the ILeVO was applied at 1.18 oz per 140,000 seeds.

Soil samples were collected from the same areas in each treatment after planting and again before harvest to determine the effect the ILeVO had on soybean cyst nematode (SCN) population development. The number of SCN eggs and juveniles found in the pre-harvest sample (PF) was divided by those in the post-planting sample (PI) to determine the SCN reproductive index (PF/PI). A lower reproductive index indicates less SCN reproduction.

**Results:** The occurrence of above-ground symptoms of SDS was minimal at all of the sites in 2016 and 2017. Despite this, the ILeVo seed treatment increased soybean yields by 5 bushels per acre at two of the seven locations in 2016 and by 2.1 bushels per acre at one site in 2017 (figure 1). The numerical yield increases occurring at the other sites were not statistically significant. However, when all the 2016 sites were combined and analyzed, ILeVO increased soybean yields by 2.8 bushels per acre and increased income by \$14.00 per acre. In 2017, the average yield increase due to ILeVO dropped to 1.8 bushels per acre.

ILeVO's effect on SCN population development was mixed in 2016 (table 2) with numerically lower SCN development at three locations and numerically higher development at two locations. In 2017, there was a stronger trend for the ILeVO to suppress in-season SCN reproduction.

We want to thank local seed dealers and Bayer Crop Science for contributing to these trials.



Seed tender for handling bulk soybean seed



Foliar sypmtoms of Sudden Death Syndrome



Planting no-till soybeans in Shiawassee County

| Location            | Untreated control | ILeVO  | LSD 0.10 | Yield difference |
|---------------------|-------------------|--------|----------|------------------|
|                     | Yield (bu/ac)     |        |          | Yield (bu/ac)    |
| St. Joseph 16-3     | 66.8 b            | 71.8 a | 2.3      | 5.0              |
| Cass 16-2           | 52.0 b            | 56.9 a | 4.5      | 4.9              |
| St. Joseph 16-1     | 52.2              | 54.9   | 4.2      | 2.7              |
| Cass 16-1           | 27.2              | 29.8   | 4.6      | 2.6              |
| Cass 17-2           | 50.3              | 52.8   | 2.7      | 2.5              |
| Cass 17-1           | 60.2 b            | 62.3 a | 1.5      | 2.1              |
| Allegan 16-1        | 67.7              | 69.6   | 2.2      | 2.0              |
| St. Joseph 17-1     | 51.9              | 53.6   | 3.5      | 1.7              |
| St. Joseph 16-2     | 72.7              | 74.0   | 2.5      | 1.3              |
| St. Joseph 17-2     | 48.8              | 49.8   | 1.8      | 1.0              |
| Allegan 16-2        | 62.2              | 62.3   | 4.2      | 0.1              |
| Average (2016-2017) | 55.6 b            | 58.0 a | 0.8      | 2.4              |
|                     | Income (\$/ac)    |        |          |                  |
| Average income      | \$512             | \$519  |          |                  |



ILeVO cost = \$15.00 per 140,000 seed unit



Figure 1. Yield difference produced by ILeVO seed treatment in 2016 and 2017

\* The yield difference was statistically significant at these locations

| Location        | SCN population<br>(P | n after planting<br>PI) | SCN population<br>(P | before harvest<br>F)          | SCN reproductive index<br>(PF/PI) |               |  |
|-----------------|----------------------|-------------------------|----------------------|-------------------------------|-----------------------------------|---------------|--|
|                 | Control              | ILeVO                   | Control              | ILeVO                         | Control                           | ILeVO         |  |
|                 |                      | SCN 6                   | eggs and juveniles   | per 100 cm <sup>3</sup> of sc | oil                               |               |  |
| St. Joseph 16-3 |                      |                         | 2,070                | 1,225                         |                                   |               |  |
| Cass 16-2       | 470                  | 440                     | 5,450                | 3,372                         | 12                                | 7.7           |  |
| St. Joseph 16-1 | 440                  | 235                     | 39,150               | 40,900                        | 89                                | 174           |  |
| Cass 17-2       | 255                  | 190                     | 6,780                | 3,260                         | 27                                | 17            |  |
| Cass 17-1       | 1                    | 1                       | 190                  | 78                            | 190                               | 78            |  |
| Cass 16-1       | 15                   | 4                       | 1,690                | 626                           | 113                               | 156           |  |
| Allegan 16-1    | 21                   | 30                      | 5,470                | 2,240                         | 260                               | 75            |  |
| St. Joseph 17-1 | 22                   | 66                      | 14,190               | 7,040                         | 645                               | 107           |  |
| St. Joseph 16-2 | 81                   | 51                      | 2,947                | 1,735                         | 36                                | 34            |  |
| St. Joseph 17-2 | 25                   | 0.5                     | 1,075                | 114                           | 43                                | 228           |  |
| Allegan 16-2    | 0                    | 0                       | 0                    | 0                             | AN ROSS                           | NAMES AND MAR |  |

The SCN reproductive index measures SCN reproduction during the growing season (lower numbers = less reproduction).

### 2017 In-furrow Calcium Fertilizer Trial

**Purpose:** Some soybean producers have the capability of applying in-furrow products at planting. These producers are looking for products that will increase soybean yields and profits when applied in-furrow. The purpose of this trial was to evaluate how an in-furrow application of LiberateCa<sup>™</sup>, a liquid calcium fertilizer from AgroLiquid will affect soybean yield and income in 2017.

**Procedure:** An in-furrow application of LiberateCa was compared to an untreated control at three locations in 2017. The LiberateCa was applied at 1 quart per acre.

**Results:** The in-furrow LiberateCa application did not increase soybean yields in any of the trial locations. The lack of a positive yield response is probably due to the fact that the soil calcium levels were medium to high at all three sites.

We want to thank the Center for Excellence for coordinating this trial.



In-furrow stater fertilizer

### Low volume, low cost

starter fertilizer is convenient but significant yield increase was not found

| Location   | Phosphorus | Potassium | Magnesium | Calcium | Soil pH | Mg base<br>saturation | Ca base<br>saturation |
|------------|------------|-----------|-----------|---------|---------|-----------------------|-----------------------|
|            |            | Parts pe  | r million | 1:1     | Perc    | cent                  |                       |
| Lenawee    | 144        | 122       | 149       | 899     | 6.2     | 23                    | 58                    |
| Ingham     | 18         | 93        | 175       | 2100    | 6.7     | 11                    | 78                    |
| St. Joseph | 65         | 92        | 112       | 780     | 6.6     | 16                    | 65                    |

Table 1. Soil test levels at the 2017 in-furrow LiberateCa trial locations



\*The yield difference was not statistically significant at any of these locations

| Table 2. 7 | The effect of an | in-furrow | application | of LiberateCa | on soybean | yield and | income in 2017 |
|------------|------------------|-----------|-------------|---------------|------------|-----------|----------------|
|------------|------------------|-----------|-------------|---------------|------------|-----------|----------------|

| Location       | Untreated control | LiberateCa     | LSD 0.10 | Yield difference |
|----------------|-------------------|----------------|----------|------------------|
|                | Yield             | (bu/ac)        |          | Yield (bu/ac)    |
| Lenawee        | 48.1              | 49.8           | 3.1      | 1.7              |
| Ingham         | 39.3              | 40.0           | 1.3      | 0.7              |
| St. Joseph     | 84.4              | 85.0           | 1.6      | 0.6              |
| Average        | 57.1              | 58.3           | 1.4      | 1.2              |
|                | Incom             | Income (\$/ac) |          |                  |
| Average income | \$525             | \$531          |          |                  |

LiberateCa cost = \$5.00 per acre